Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T01:00:57.533Z Has data issue: false hasContentIssue false

Paleofire reconstruction for high-elevation forests in the Sierra Nevada, California, with implications for wildfire synchrony and climate variability in the late Holocene

Published online by Cambridge University Press:  20 January 2017

Douglas J. Hallett*
Affiliation:
Biogeoscience Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4 School of Environmental Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
R. Scott Anderson
Affiliation:
School of Earth Sciences and Environmental Sustainability and Bilby Research Center Box 5694, Northern Arizona University Flagstaff, AZ 86011, USA
*
*Corresponding author. Biogeoscience Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4.E-mail address:[email protected] (D.J. Hallett).

Abstract

Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño–Southern Oscillation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, J.K., (1993). Fire Ecology of Pacific Northwest Forests. Island Press, Washington, D.C. Google Scholar
Anderson, R.S., (1990). Holocene forest development and paleoclimates within the central Sierra Nevada, California. Journal of Ecology 78, 470489.CrossRefGoogle Scholar
Anderson, R.S., (1996). Postglacial biogeography of Sierra lodgepole pine (Pinus contorta var murrayana) in California. Ecoscience 3, 343351.CrossRefGoogle Scholar
Anderson, R.S., Allen, C.D., Toney, J.L., Jass, R.B., Bair, A.N., (2008). Holocene vegetation and forest fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA. International Journal of Wildland Fire 17, 96114.CrossRefGoogle Scholar
Anderson, R.S., Hallett, D.J., Jass, R.B., Berg, E., Toney, J.L., de Fontaine, C.S., Devolder, A., (2006). Holocene development of boreal forests and fire regimes on the Kenai lowlands, Alaska. The Holocene 16, 791803.CrossRefGoogle Scholar
Anderson, R.S., Smith, S.J., (1994). Paleoclimatic interpretations of meadow sediment and pollen stratigraphies from California. Geology 22, 723726.2.3.CO;2>CrossRefGoogle Scholar
Anderson, R.S., Smith, S.J., (1997). The sedimentary record of fire in montane meadows, Sierra Nevada, California, USA: a preliminary assessment. Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B., Sediment Records of Biomass Burning and Global Change. Springer-Verlag, Heidelberg., 313327.CrossRefGoogle Scholar
Arora, V.K., Boer, G.J., (2005). Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research 110, G02008.CrossRefGoogle Scholar
Bacon, S.N., Burke, R.M., Pezzopane, S.K., Jayko, A.S., (2006). Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA. Quaternary Science Reviews 25, 12641282.CrossRefGoogle Scholar
Beaty, R.M., Taylor, A.H., (2009). A 14000 year sedimentary charcoal record of fire from the northern Sierra Nevada, Lake Tahoe Basin, California, USA. The Holocene 19, 347358.CrossRefGoogle Scholar
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., Lindstrom, S., (2002). Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada. Quaternary Science Reviews 21, 659682.CrossRefGoogle Scholar
Berger, A., Loutre, M.E., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Briles, C.E., Whitlock, C., Bartlein, P.J., (2005). Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA. Quaternary Research 64, 4456.CrossRefGoogle Scholar
Briles, C.E., Whitlock, C., Bartlein, P.J., Higuera, P., (2008). Regional and local controls on postglacial vegetation and fire in the Siskiyou Mountains, northern California, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 159169.CrossRefGoogle Scholar
Brunelle, A., Anderson, R.S., (2003). Sedimentary charcoal as an indicator of late-Holocene drought in the Sierra Nevada, California and its relevance to the future. The Holocene 13, 2128.CrossRefGoogle Scholar
Brunelle, A., Whitlock, C., Bartlein, P.J., Kipfmueller, K., (2005). Holocene fire and vegetation change along environmental gradients in the Northern Rocky Mountains. Quaternary Science Reviews 24, 22812300.CrossRefGoogle Scholar
Cane, M.A., (2005). The evolution of El Nino, past and future. Earth and Planetary Science Letters 230, 227240.CrossRefGoogle Scholar
Carcaillet, C., Bergeron, Y., Richard, P.J.H., Fr"chette, B., Gauthier, S., Prairie, Y.T., (2001). Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime?. Journal of Ecology 89, 930946.CrossRefGoogle Scholar
Clark, J.S., (1989). Ecological disturbance as a renewal process: theory and application to fire history. Oikos 56, 1730.CrossRefGoogle Scholar
Clark, J.S., Royall, P.D., Chumbley, C., (1996). The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology 77, 21482166.CrossRefGoogle Scholar
Clement, A.C., Seager, R., Cane, M.A., (2000). Suppression of El Nino during the mid-Holocene by changes in earth's orbit. Paleoceanography 15, 731737.CrossRefGoogle Scholar
Cleveland, W.S., (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistics Association 74, 829836.CrossRefGoogle Scholar
Collins, B.M., Stephens, S.L., (2007). Managing natural wildfires in Sierra Nevada wilderness areas. Frontiers in Ecology and the Environment 5, .CrossRefGoogle Scholar
Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., Steinitz-Kannan, M., (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galapagos lake sediment record. Quaternary Science Reviews 27, 11661180.CrossRefGoogle Scholar
Cook, E.R., Woodhouse, C.A., Eakin, C.M., Meko, D.M., Stahle, D.W., (2004). Long-term aridity changes in the western United States. Science 306, 10151018.CrossRefGoogle ScholarPubMed
Daniels, M., Anderson, R.S., Whitlock, C., (2005). Vegetation and fire history since the late Pleistocene from the Trinity Mountains, northwestern, California. The Holocene 15, 10621071.CrossRefGoogle Scholar
Davis, O.K., Anderson, R.S., Fall, P., O'Rourke, M.K., Thompson, R.S., (1985). Palynological evidence for early Holocene aridity in the southern Sierra Nevada, California. Quaternary Research 24, 322332.CrossRefGoogle Scholar
Del Genio, A.D., Yao, M.S., Jonas, J., (2007). Will moist convection be stronger in a warmer climate?. Geophysical Research Letters 34, L16703.CrossRefGoogle Scholar
Diggle, P.J., (2003). Statistical Analysis of Spatial Point Patterns. Hodder Arnold, London. Google Scholar
Donders, T.H., Wagner-Cremer, F., Visscher, H., (2008). Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability. Quaternary Science Reviews 27, 571579.CrossRefGoogle Scholar
Emile-Geay, J., Cane, M., Seager, R., Kaplan, A., Almasi, P., (2007). El Nino as a mediator of the solar influence in climate. Paleoceanography 22, PA3210.CrossRefGoogle Scholar
Fauria, M.M., Johnson, E.A., (2006). Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska. Journal of Geophysical Research 111, G04008.Google Scholar
Fisler, J., Hendy, I.L., (2008). California Current System response to late Holocene climate cooling in southern California. Geophysical Research Letters 35, L09702.CrossRefGoogle Scholar
Friddell, J.E., Thunell, R.C., Guilderson, T.P., Kashgarian, M., (2003). Increased northeast Pacific climate variability during the warm middle Holocene. Geophysical Research Letters 30, 1560.CrossRefGoogle Scholar
Gavin, D.G., Brubaker, L.B., Lertzman, K.P., (2003). An 1800-year record of the spatial and temporal distribution of fire from the west coast of Vancouver Island, Canada. Canadian Journal of Forest Research 33, 573586.CrossRefGoogle Scholar
Gavin, D.G., Hallett, D.J., Hu, F.S., Lertzman, K.P., Prichard, S.J., Brown, K.J., Lynch, J.A., Bartlein, P.J., Peterson, D.L., (2007). Forest fire and climate change in western North America: insights from sediment charcoal records. Frontiers in Ecology and the Environment 5, 499506.CrossRefGoogle Scholar
Gavin, D.G., Hu, F.S., Lertzman, K., Corbett, P., (2006). Weak climatic control of stand-scale fire history during the late Holocene. Ecology 87, 17221732.CrossRefGoogle ScholarPubMed
Gedalof, Z., Peterson, D., Mantua, N.J., (2005). Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. Ecological Applications 15, 154174.CrossRefGoogle Scholar
Graumlich, L.J., (1993). A 1000-year record of temperature and precipitation in the Sierra Nevada. Quaternary Research 39, 249255.CrossRefGoogle Scholar
Grissino-Mayer, H.D., (1999). Modeling fire interval data from the American Southwest with the Weibull distribution. International Journal of Wildland Fire 9, 3750.CrossRefGoogle Scholar
Hallett, D.J., Lepofsky, D.S., Mathewes, R.W., Lertzman, K.P., (2003). 11,000 years of fire history and climate in the mountain hemlock rainforests of southwestern British Columbia based on sedimentary charcoal. Canadian Journal of Forest Research 33, 292312.CrossRefGoogle Scholar
Hayhoe, K., Cayan, D.R., Field, C.B., Frumhoff, P.C., Maurer, E., Miller, N.L., Moser, S.C., Schneider, S.H., Cahill, K.N., Cleland, E.E., Dale, L., Drapek, R., Hanemann, R.M., Kalkstein, L.S., Lenihan, J., Lunch, C.K., Neilson, R.P., Sheridan, S.C., Verhille, J., (2004). Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences 101.Google ScholarPubMed
Hessl, A.E., McKenzie, D., Schellhaas, R., (2004). Drought and Pacific decadal oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological Applications 14, 425442.CrossRefGoogle Scholar
Hickman, J.C., (1993). The Jepson Manual. University of California Press, Berkeley. Google Scholar
Higuera, P.E., (2006). Late Glacial and Holocene Fire History in the Southcentral Brooks Range, Alaska: Direct and Indirect Impacts of Climatic Change on Fire Regimes. University of Washington, . Google Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., (2009). Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, 201219.CrossRefGoogle Scholar
Higuera, P.E., Peters, M.E., Brubaker, L.B., Gavin, D.G., (2007). Understanding the origin and analysis of sediment"charcoal records with a simulation model. Quaternary Science Reviews 26, 17901809.CrossRefGoogle Scholar
Higuera, P.E., Sprugel, D.G., Brubaker, L.B., (2005). Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. The Holocene 15, 238251.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B., Gavin, D.G., Higuera, P.E., Lynch, J.A., Rupp, T.S., Tinner, W., (2006). How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change 11, 829846.CrossRefGoogle Scholar
IPCC, , (2007). Climate Change 2007. The Physical Science Basis: Summary for Policymakers. World Meteorological Organization, Geneva. Google Scholar
Johnson, E.A., Gutsell, S.L., (1994). Fire frequency models, methods and interpretations. Advances in Ecological Research 25, 239287.CrossRefGoogle Scholar
Johnson, E.A., Van Wagner, C.E., (1985). The theory and use of two fire history models. Canadian Journal of Forest Research 15, 214220.CrossRefGoogle Scholar
Johnson, E.A., Wowchuk, D.R., (1993). Wildfires in the southern Canadian Rocky Mountains and their relationship to mid-tropospheric anomalies. Canadian Journal of Forest Research 23, 12131222.CrossRefGoogle Scholar
Kitzberger, T., Brown, P.M., Heyerdahl, E.K., Swetnam, T.W., Veblen, T.T., (2007). Contingent Pacific"Atlantic Ocean influence in multicentury wildfire synchrony over western North America. Proceedings of the National Academy of Sciences 104, 543548.CrossRefGoogle ScholarPubMed
Kitzberger, T., Swetnam, T.W., Veblen, T.T., (2001). Inter-hemispheric synchrony of forest fires and the El Niño–Southern Oscillation. Global Ecology and Biogeography 10, 315326.CrossRefGoogle Scholar
Konrad, S.K., Clark, D.H., (1998). Evidence for an early Neoglacial advance from rock glaciers and lake sediments in the Sierra Nevada, California, U.S.A. Arctic and Alpine Research 30, 272284.CrossRefGoogle Scholar
Koutavas, A., deMenocal, P.B., Olive, G.C., Lynch-Stieglitz, J., (2006). Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, 993996.CrossRefGoogle Scholar
LaMarche Jr., V.C., (1973). Holocene climatic variations from treeline fluctuations in the White Mountains, California. Quaternary Research 3, 632660.CrossRefGoogle Scholar
Lenihan, J.M., Bachelet, D., Neilson, R.P., Drapek, R., (2008). Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Climatic Change 87, S215S230.CrossRefGoogle Scholar
Lloyd, A.H., Graumlich, L.J., (1997). Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78, 11991210.CrossRefGoogle Scholar
Long, C.J., Whitlock, C., Bartlein, P.J., Millspaugh, S.H., (1998). A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forest Research 28, 774787.CrossRefGoogle Scholar
Lutz, J.A., van Wagtendonk, J.W., Thode, A.E., Miller, J.D., Franklin, J.F., (2009). Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA. International Journal fo Wildland Fire 18, 765774.CrossRefGoogle Scholar
Lynch, J.A., Clark, J.S., Bigelow, N.H., Edwards, M.E., Finney, B.F., (2003). Geographic and temporal variations in fire history in boreal ecosystems of Alaska. Journal of Geophysical Research 108, 8"1"8"17.Google Scholar
Lynch, J.A., Hollis, J.L., Hu, F.S., (2004). Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. Journal of Ecology 92, 477489.CrossRefGoogle Scholar
Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A., (2005). Volcanic and solar forcing of the tropical Pacific over the past 1000 years. Journal of Climate 18, 447456.CrossRefGoogle Scholar
Marlon, J., Bartlein, P.J., Whitlock, C., (2006). Fire"fuel"climate linkages in the northwestern USA during the Holocene. The Holocene 16, 10591071.CrossRefGoogle Scholar
Martin, Y.E., (2007). Wildfire disturbance and shallow landsliding in coastal British Columbia over millennial timescales: a numerical modelling study. Catena 69, 206219.CrossRefGoogle Scholar
Millar, C.I., King, J.C., Westfall, R.D., Alden, H.A., Delany, D.L., (2006). Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA. Quaternary Research 66, 273287.CrossRefGoogle Scholar
Millspaugh, S.H., Whitlock, C., Bartlein, P.J., (2000). Variations in fire frequency and climate over the past 17,000"yr in central Yellowstone National Park. Geology 28, 211214.2.0.CO;2>CrossRefGoogle Scholar
Mohr, J.A., Whitlock, C., Skinner, C.N., (2000). Postglacial vegetation and fire history, eastern Klamath mountains, California, USA. The Holocene 10, 587601.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Nino/Southern Oscillation at millennial timescales during the Holocene epoch. Nature 420, 162165.CrossRefGoogle ScholarPubMed
Potito, A.P., Porinchu, D.F., MacDonald, G.M., Moser, K.A., (2006). A late Quaternary chironomid-inferred temperature record from the Sierra Nevada, California, with connections to northeast Pacific sea surface temperatures. Quaternary Research 66, 356363.CrossRefGoogle Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., Bradshaw, R., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P., Prentice, I.C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Anderson, R.S., Beer, R., Behling, H., Briles, C., Brown, K.J., Brunelle, A., Bush, M., Camill, P., Chu, G.Q., Clark, J.S., Colombaroli, D., Connor, S., Daniels, M., Daniau, A.L., Dodson, J., Doughty, E., Edwards, M.E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M.J., Gil-Romera, G., Gavin, D.G., Gobet, E., Haberle, S., Hallett, D.J., Higuera, P., Hope, G., Horn, S., Impagliazzo, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong, Z.C., Larsen, C., Long, C.J., Lynch, J., Lynch, B., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P.J.H., Rowe, C., Sanchez Go"i, M.F., Shuman, B.J., Takahara, H., Toney, J., Turney, C., Umbanhower, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., Zhang, J.H, (2008). Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30, 887907.CrossRefGoogle Scholar
Price, C., Rind, D., (1994). The impact of 2 " CO2 climate on lightning-caused fires. Journal of Climate 7, 14841494.2.0.CO;2>CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). INTCAL04 terrestrial radiocarbon age calibration, 0"26"cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Ripley, B.D., (1977). Modelling spatial patterns. Journal of the Royal Statistical Society B39, 172212.Google Scholar
Sandgren, P., Snowball, I., (2001). Application of mineral magnetic techniques to paleolimnology. Last, W.M., Smol, J.P., Tracking Environmental Change Using Lake Sediments. Kluwer Academic Publishers, Dordrecht., 217238.Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson, J.B., Rollins, H.B., Clement, A., (2001). Variation in Holocene El Nino frequencies: climate records and cultural responses in ancient Peru. Geology 29, 603606.2.0.CO;2>CrossRefGoogle Scholar
Seager, R., Graham, N., Herweijer, C., Gordon, A.L., Kushnir, Y., Cook, E.R., (2007a). Blueprints for Medieval hydroclimate. Quaternary Science Reviews 26, 23222336.CrossRefGoogle Scholar
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.P., Harnik, N., Leetmaa, A., Lau, N.C., Li, C., Velez, J., Naik, N., (2007b). Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 11811184.CrossRefGoogle ScholarPubMed
Sheffield, J., Goteti, G., Wen, F., Wood, E.F., (2004). A simulated soil moisture based drought analysis for the United States. Journal of Geophysical Research 109, D24108.CrossRefGoogle Scholar
Smith, S.J., Anderson, R.S., (1992). Late Wisconsin paleoecologic record from Swamp Lake, Yosemite National Park, California. Quaternary Research 38, 91102.CrossRefGoogle Scholar
Stephens, S.L., (2001). Fire history in adjacent Jeffery pine and upper montane forests in the eastern Sierra Nevada. International Journal of Wildland Fire 10, 161167.CrossRefGoogle Scholar
Stephens, S.L., (2005). Forest fire causes and extent on United States Forest Service lands. International Journal of Wildland Fire 14, 213222.CrossRefGoogle Scholar
Stephenson, N.L., (1999). Reference conditions for giant sequoia forest restoration: structure, process, and precision. Ecological Applications 9, 12531265.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van Der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000"0"cal BP. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Swetnam, T.W., (1993). Fire history and climate change in giant sequoia groves. Science 262, 885889.CrossRefGoogle ScholarPubMed
Swetnam, T.W., Betancourt, J.L., (1990). Fire"southern oscillation relations in the southwestern United States. Science 249, 10171020.CrossRefGoogle ScholarPubMed
Swetnam, T.W., Betancourt, J.L., (1998). Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. Journal of Climate 11, 31283147.2.0.CO;2>CrossRefGoogle Scholar
Taylor, A.H., Beaty, R.M., (2005). Climatic influences on fire regimes in the northern Sierra Nevada mountains, Lake Tahoe basin, Nevada, USA. Journal of Biogeography 32, 425438.CrossRefGoogle Scholar
Telford, R.J., Heegaard, E., Birks, H.J.B., (2004). The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14, 296298.CrossRefGoogle Scholar
Trouet, V., Taylor, A.H., Carleton, A.M., Skinner, C.N., (2006). Fire"climate interactions in forests of the American Pacific coast. Geophysical Research Letters 33, L18704.CrossRefGoogle Scholar
van Wagtendonk, J.W., (1995). Large fires in wilderness areas. Brown, J.K., Mutch, R.W., Spoon, C.W., Wakimoto, R.H., Proceedings"Symposium on Fire in Wilderness and Park Management. USDA Forest Service Gen. Tech. Rep. INT-GTR 320, 113116.Google Scholar
van Wagtendonk, J.W., Cayan, D.R., (2008). Temporal and spatial distribution of lightning strikes in California in relation to large-scale weather patterns. Fire Ecology 4, 3456.CrossRefGoogle Scholar
van Wagtendonk, J.W., Fites-Kaufman, J.A., (2006). Sierra Nevada bioregion. Sugihara, N.G., Wagtendonk, J.W. v., Shaffer, K.E., Fites-Kaufman, J.A., Thode, A.E., Fire in California's Ecosystems. University of California Press, Berkeley, CA., 264293.CrossRefGoogle Scholar
Weisberg, P.J., Swanson, F.J., (2003). Regional synchroneity in fire regimes of western Oregon and Washington, USA. Forest Ecology and Management 172, 1728.CrossRefGoogle Scholar
Westerling, A.L., Brown, T.J., Gershunov, A., Cayan, D.R., Dettinger, M.D., (2003). Climate and wildfire in the western United States. Bulletin American Meteorological Society 84, 595604.CrossRefGoogle Scholar
Westerling, A.L., Byrant, B.P., (2008). Climate change and wildfire in California. Climatic Change 87, 231249.CrossRefGoogle Scholar
Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., (2006). Warming and earlier spring increases western U.S. forest wildfire activity. Science 6, 15.Google Scholar
Whitlock, C., Anderson, R.S., (2003). Fire history reconstructions based on sediment records from lakes and wetlands. Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W., Fire and Climatic Change in Temperate Ecosystems of the Americas. Springer-Verlag, Berlin., 331.CrossRefGoogle Scholar
Whitlock, C., Bartlein, P.J., (2004). Holocene fire activity as a record of past environmental change. Developments in Quaternary Science 1, 479490.CrossRefGoogle Scholar
Whitlock, C., Moreno, P.I., Bartlein, P.J., (2007). Climatic controls of Holocene fire patterns in southern South America. Quaternary Research 68, 2836.CrossRefGoogle Scholar
Wood, S.H., (1977). Distribution, correlation and radiocarbon dating of late Holocene tephra, Mono and Inyo craters, eastern California. Geological Society of America Bulletin 88, 8995.2.0.CO;2>CrossRefGoogle Scholar