Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:42:05.692Z Has data issue: false hasContentIssue false

Paleoenvironment of Jawa basalt plateau, Jordan, inferred from calcite speleothems from a lava tube

Published online by Cambridge University Press:  20 January 2017

Amos Frumkin*
Affiliation:
Department of Geography, The Hebrew University of Jerusalem, Jerusalem, 91905, Israel
Miryam Bar-Matthews
Affiliation:
Geological Survey of Israel, 30 Malchei Israel St., Jerusalem 95501, Israel
Anton Vaks
Affiliation:
Geological Survey of Israel, 30 Malchei Israel St., Jerusalem 95501, Israel
*
*Corresponding author. E-mail address:[email protected] (A. Frumkin), [email protected] (M. Bar-Matthews).

Abstract

This paper explores the environmental conditions that faced the people of ancient Jawa during the Holocene, as well as previous prehistoric periods of the mid-late Pleistocene. Calcite speleothems in a lava tube are dated using the U-Th method, to marine oxygen isotope stage 7 from ∼ 250 to 240 ka and from ∼ 230 to ∼ 220 ka; and the stage 5/4 transition between ∼ 80 and 70 ka. The available evidence indicates general aridity of the Black Desert during most of the mid-late Quaternary, punctuated by short wetter periods, when the Mediterranean cyclonic systems intensified and penetrated the north Arabian Desert. These Mediterranean systems had a longer and more intense effect on the desert fringe closer to the Mediterranean and only rarely penetrated the Black Desert of Jawa. The results do not exclude some increase of rainfall which did not change water availability dramatically during the warm Holocene. The ancient Jawa city appears to have depended on technological ability to build elaborate runoff-collection systems, which became the prime condition for success.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abed, A., Carbonel, P., Collina, G.J., M, F., Petit-Maire, N., Reyss, J.C., Yasin, S., (2000). Un paleolac du dernier interglaciaire pleistocene dans l'extreme-sud hyperaride de la Jordanie. Comptes Rendus de l'Academie de Sciences Serie IIa: Sciences de la-Terre et des Planetes 330, 259264.Google Scholar
Almogi-Labin, A., Hemleben, C., Meischner, D., (1998). Carbonate preservation and climatic changes in the central Red Sea during the last 380 kyr as recorded by pteropods. Marine Micropaleontology 33, 87.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., Hawkesworth, C.J., (2003). Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 31813199.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., (1998). Middle to late Holocene (6500 yr period) paleoclimate in the eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. Brown, N., Issar, A. Water, environment and society in times of climatic change. Kluwer, Amsterdam.203214.CrossRefGoogle Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A., Reches, Z., (2002). Lake levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor of the Dead Sea. Quaternary Research 57, 921.CrossRefGoogle Scholar
Bender, F. (1974). “Geology of Jordan.”. Borntraeger, Berlin.Google Scholar
Besançon, J., Sanlaville, P., (1988). L'évolution geomorphologique du basin d'Azraq (Jordanie) depuis le pléistocene moyen. Paléorient 14, 2330.CrossRefGoogle Scholar
Betts, A.G., Helms, S.W., (1991). Excavations at Jawa 1972–1986: Stratigraphy, Pottery and Other Finds.. Edinburgh Universih Press, Edinburgh.Google Scholar
Betts, A.V.G., (1998). The Harra and the Hamad: Excavations and Surveys in Eastern Jordan, Vol. 1.. Sheffield Academic Press, Sheffield.Google Scholar
Burns, S.J., Fleitmann, D., Matter, A., (2001). Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, 623626.2.0.CO;2>CrossRefGoogle Scholar
Burns, S.J., Fleitmann, D., Matter, A.K., Jan, Al-Subbary, A.A.(2003). Indian Ocean climate and an absolute chronology over Dansgaard/ Oeschger events 9 to 13. Science 301, 13651367.CrossRefGoogle Scholar
Camp, V.E., Roobol, M.J., (1992). Upwelling asthenosphere beneath western Arabia and its regional implications. Journal of Geophysical Research 97, (15) 255271.CrossRefGoogle Scholar
Cane, G. (1992). “A paleoclimatic reconstruction based on lacustrine sediments of the Azraq Basin. Jordan” . Thesis. University of Ottawa, Ottawa.Google Scholar
Cullen, H.M., deMenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T., Sirocko, F., (2000). Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28, 379382.2.0.CO;2>CrossRefGoogle Scholar
Davies, C.P., (2005). Quaternary paleoenvironments and potential for human exploitation of the Jordan plateau desert interior. Geoarchaeology 20, 379400.CrossRefGoogle Scholar
deMenocal, P.B., (2001). Cultural responses to climate change during the late Holocene. Science 292, 667.CrossRefGoogle ScholarPubMed
Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., Sharon, D., (2008). The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts.. Global and Planetary Change 60, 165192.CrossRefGoogle Scholar
Eshel, G., (2002). Mediterranean climates. Israel Journal of Earth-Science 51, 157168.CrossRefGoogle Scholar
Evenari, M., Shanan, L., Tadmor, N.H., (1971). The Negev— the challenge of a desert.. Harvard University Press, Cambridge, Mass.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300, 17371739.CrossRefGoogle Scholar
Fleitmann, D., Matter, A., Pint, J.J., Al-Shanti, M.A., (2004). The speleothem record of climate change in Saudi Arabia, Open-file report SGS-OF-2004-8 1425 H 2004 G.. Saudi Geological Survey, Jeddah.Google Scholar
Frumkin, A., (1994). Hydrology and denudation rates of halite karst. Journal of Hydrology 162, 171189.CrossRefGoogle Scholar
Frumkin, A., Carmi, I., Zak, I., Magaritz, M., (1994). Middle Holocene environmental change determined from the salt caves of Mount Sedom, Israel. Bar-Yosef, O., Kra, R. Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean. The University of Arizona, Tucson.pp. 315322.Google Scholar
Garrard, A., Betts, A., Byrd, B., Hunt, C., (1988). Summary of paleoenvironmental and prehistoric investigations in the Azraq Basin. Garrard, A., Gebel, H.G. The prehistory of Jordan, Parts I and II (pp. 311–337), BAR International Series 396. British Archaeological Reports, Oxford.Google Scholar
Greeley, R., Hyde, J.H., (1972). Lava Tubes of the Cave Basalt, Mount St. Helens, Washington. Geological Society of America Bulletin 83, 23972418.CrossRefGoogle Scholar
Haase-Schramm, A., Goldstein, S.L., Stein, M., (2004). U–Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial East Mediterranean climate change. Geochimica et Cosmochimica Acta 68, 9851005.CrossRefGoogle Scholar
Halliday, W.R., (2004). Hawaii lava tube caves, United States. Gunn, J. Encyclopedia of Caves and Karst Science. Fizroy Dearborn- Taylor and Francis Group, New York– London.pp. 415416.Google Scholar
Helms, S.W., (1981). Jawa, Lost City of the Black Desert. Methuen, London.Google Scholar
Holmgren, K., Lauritzen, S.-E., Possnert, G., (1994). 230Th/234U and 14C dating of a Late Pleistocene stalagmite in Lobatse II Cave, Botswana. Quaternary Science Reviews 13, 111119.CrossRefGoogle Scholar
Huckriede, R., Weisemann, G., (1968). Der Jungpleistozane pluvial-see von El-Jafr und weitere daten zum Quartar Jordaniens. Geologica et Palaeontologica 2, 7395.Google Scholar
Ilani, S., Harlavan, Y., Tarawneh, K., Rabba, I., Weinberger, R., Ibrahim, K., Peltz, S., Steinitz, G., (2001). New K–Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: Implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29, 171174.2.0.CO;2>CrossRefGoogle Scholar
Issar, A.S., Zohar, M., (2007). Environment and History of the Near East.. Springer, Berlin.Google Scholar
Kashima, N., Ogawa, T., Hong, S.H., (1989). Volcanogenic speleo-minerals in Cheju Island, Korea. Journal of Speleological Society of Japan 14, 3239.Google Scholar
Kashima, N., Suh, M.S., (1984). Hjeobaje cave system, a pseudo-calcareous cave in Jeju Island, South Korea. Journal of Speleological Society of Japan 9, 2330.Google Scholar
Kempe, S., Al-Malabeh, A., (2005). Newly discovered lava tunnels of the Al-Shaam plateau basalts, Jordan EUG Geophysical Research Abstracts.. EUG, 03204.Google Scholar
Kennedy, D., (1995). Water supply and use in the southern Hauran, Jordan. Journal of Field Archaeology 22, 275290.Google Scholar
Kyung-Sik, W., Don Won, C., Ryeon, K., Jin-Kyung, K., (2004). The origin of the calcite speleothems in Dangcheomul Cave (lava tube), Jeju Island, Korea; its sedimentological significance and potential for the World Heritage nomination.. In “32nd international geological congress; abstracts”, p. 1016, Itlia.Google Scholar
Lézine, A.M., Saliege, J.F., Robert, C., Wertz, F., Inizan, M.L., (1998). Holocene lakes from Ramlat as-Sab’atayn (Yemen) illustrate the impact of monsoon activity in Southern Arabia. Quaternary Research 50, 290299.CrossRefGoogle Scholar
Lisker, S. (2007). “A palaeo-environmental reconstruction of the Dead Sea region, based on cave findings.”. Unpublished PhD thesis (in Hebrew, English abstract) thesis, The Hebrew University, .Google Scholar
McClure, H.A., (1976). Radiocarbon chronology of Late Quaternary lakes in the Arabian Desert. Nature 263, 755756.CrossRefGoogle Scholar
Moffat, D.T., (1988). A volcanotectonic analysis of the Cenozoic continental basalts of northern Jordan; implications for hydrocarbon prospecting in the block B area. EJ88-1 ERI Jordan, Amman.Google Scholar
Nawasra, M.K., (1994). Geological map of Deir El-Ka'hf, sheet 3454-III. Jordan Natural Resources Authority, Amman.Google Scholar
Nawasra, M.K., (1997). Geological map of Deir El-Ka'hf, sheet 3354-I. Jordan Natural Resources Authority, Amman.Google Scholar
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., Anhh, M., (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290293.CrossRefGoogle ScholarPubMed
Petit-Maire, N., Sanlaville, P., Abed, A., Yasin, S., Bourrouilh, R., Carbonel, P., Fontugne, M., Reyss, J.L., (2002). New data for an Eemian lacustrine phase in southern Jordan. Episodes 25, 279280.CrossRefGoogle Scholar
Pint, J.J., (2006). Vulcanospeleology in Saudi Arabia. Acta Carsologica 35, 107120.CrossRefGoogle Scholar
Shaliv, G., (1991). Stages in the tectonic and volcanic history of the Neogene basin in the lower Galilee and the valleys.. Geological Survey of Israel, Report GSI/11/91, Jerusalem.Google Scholar
Sharkov, E.V., Chernyshev, I.V., Devyatkin, E.V., Dodonov, A.E., Ivanenko, V.V., Karpenko, M.I., Leonov, Y.G., Novikov, V.M., Hanna, S., Khatib, K., (1994). Geochronology of late Cenozoic basalts in western Syria. Petrology 2, 385394.Google Scholar
Sherratt, A., (1980). Water, soil and seasonality in early cereal cultivation. World Archaeology 11, 313330.CrossRefGoogle Scholar
Steinitz, G., Bartov, Y., Hunziker, J.C., (1978). K–Ar age determinations of some Miocene–Pliocene basalts in Israel: their significance to the tectonics of the rift valley. Geological Magazine 115, 329340.CrossRefGoogle Scholar
Tarawneh, K., Ilani, S., Rabba, I., Harlavan, Y., Peltz, S., Ibrahim, K., Weinberger, R., Steinitz, G., (2000). Dating of the Harrat Ash-Shaam Basalts, northeast Jordan, Report GSI/2/2000.. Jordan Natural Resources Authority and Geological Survey of Israel, Jerusalem.Google Scholar
Vaks, A. (2007). “Quaternary paleoclimate of north-eastern boundary of the Saharan Desert: reconstruction from speleothems of Negev Desert, Israel.”. Unpublished PhD thesis, The Hebrew University, .Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth, C.J., Frumkin, A., Kaufman, A., Matthews, A., (2003). Paleoclimate reconstruction based on the timing of speleothem growth, oxygen and carbon isotope composition from a cave located in the 'rain shadow', Israel. Quaternary Research 59, 182193.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Frumkin, A., Dayan, U., Halicz, L., Almogi-Labin, A., Schilman, B., (2006). Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384399.CrossRefGoogle Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Halicz, L., Frumkin, A., (2007). Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35, 831834.CrossRefGoogle Scholar
Waters, A.C., Donnelly-Nolan, J.M., Rogers, B.W., (1990). Selected caves and lava tube systems in and near Lava Beds National Monument, California. U.S. Geological Survey Bulletin 1673.. U.S. Geological Survey, Denver.Google Scholar
Weiss, H., Bradley, R.S., (2001). What drives social collapse? Science 291, 609610.CrossRefGoogle ScholarPubMed
Whitney, J.W., (1982). Geologic evidence of late Quaternary climate change in western Saudi Arabia. Bintliff, J.L., Van Zeist, W. Palaeoclimates, palaeoenvironments and human communities in the eastern Mediterranean region in later prehistory. BAR International Series, Oxford.pp. 277321.Google Scholar
Wilkinson, J.T., (1997). Environmental fluctuations, agricultural production and collapse: a view from Bronze Age Upper Mesopotamia. Dalfes, G., Kukla, G., Weiss, H. Third Millennium B.C. Climatic Change and Old World Collapse. Global Environmental Change. NATO ASI Series, pp. 67106.CrossRefGoogle Scholar
Witter, J.B., Harris, A.J., (2007). Field measurements of heat loss from skylights and lava tube systems. Journal of Geophysical Research 112, B01203.CrossRefGoogle Scholar
Woo, K.S., Choi, D.W., Kim, R., Kim, J.K., (2000). The origin of the speleothems in Dangcheomul Cave, Jeju Island, Korea. Journal of the Geological Society of Korea 36, (4) 2000411434.Google Scholar
Supplementary material: PDF

Frumkin et al. Supplementary Material

Supplementary Material

Download Frumkin et al. Supplementary Material(PDF)
PDF 45.1 KB