Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T17:11:17.722Z Has data issue: false hasContentIssue false

Paleoclimatic Reconstruction Using Mutual Climatic Range on Terrestrial Mollusks

Published online by Cambridge University Press:  20 January 2017

Olivier Moine
Affiliation:
Paléoenvironnements & Palynologie, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université Montpellier II, case 61, place E. Bataillon, 34095 Montpellier Cedex 5, France, E-mail: [email protected]
Denis-Didier Rousseau
Affiliation:
Paléoenvironnements & Palynologie, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université Montpellier II, case 61, place E. Bataillon, 34095 Montpellier Cedex 5, France, E-mail: [email protected] Paléoenvironnements & Palynologie, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université Montpellier II, case 61, place E. Bataillon, Montpellier Cedex 5, 34095, France and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964
Dominique Jolly
Affiliation:
Paléoenvironnements & Palynologie, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université Montpellier II, case 61, place E. Bataillon, 34095 Montpellier Cedex 5, France, E-mail: [email protected]
Marc Vianey-Liaud
Affiliation:
Génétique et Environnement, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université Montpellier II, case 64, place E. Bataillon, Montpellier Cedex 5, 34095, France

Abstract

Terrestrial mollusks, easily identified in Quaternary sediments, represent a reliable tool for quantitative estimates of environmental parameters. Our study, comparing the species distribution with meteorological parameters in Europe, shows that mean temperature of the coldest month and annual thermal magnitude are the most important forcing parameters. This survey allows us to adapt the mutual climatic range (MCR) method to terrestrial mollusk assemblages following two main steps. A set of assemblages from different European regions (northern Norway to southern France) is used to apply the method to present-day mollusks. The reconstructed values describe the latitudinal temperature gradient prevailing over Europe. However, the comparison between the reconstructed and the measured values indicates a shift, similar to that observed, with the same method applied to beetle assemblages. Thus, estimates must be calculated after the reconstruction is tuned with the observations. The results from the modern mollusk assemblages indicate that the MCR method can be safely applied to reconstructing temperatures from terrestrial mollusk assemblages in any worldwide Quaternary sequence. A trial application is made on Late Pleistocene assemblages from Achenheim (Alsace, France).

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. Information theory and an extension of the maximum likelihood principle. Petrov, B.N., and Csaki, K. Second International Symposium on Information Theory. (1973). Akademiai Kiado, Budapest. 267 Google Scholar
Andersen, J., and Halvorsen, O. Species composition, abundance, habitat requirements and regional distribution of terrestrial gastropods in Arctic Norway. Polar Biology 3, (1984). 4553.CrossRefGoogle Scholar
Armitage, K., and Stinson, D. Metabolic acclimation to temperature in a terrestrial snail. Comparative Biochemistry and Physiology A 67, (1980). 135139.Google Scholar
Atkinson, T.C., Briffa, K.R., Coope, G.R., Joachim, M.J., and Perry, D.W. Climatic calibration of coleopteran data. Berglund, B.E. Handbook of Holocene Palaeoecology and Palaeohydrology. (1986). Wiley, Chichester. 851859.Google Scholar
Atkinson, T.C., Briffa, K.R., and Coope, G.R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, (1987). 587592.Google Scholar
Biannic, M., Coillot, J.-P., and Daguzan, J. Circadian cardiac rhythm in relation to environmental variables in the snail Helix aspersa Müller. Journal of Molluscan Studies 61, (1995). 289292.Google Scholar
Blazka, P. Der tägliche Rhythmus des Gesamtmetabolismus in der Weinbergschnecke (Helix pomatia L.). Acta Societatis Zoologicae Bohemoslovenicae 17, (1953). 251265.Google Scholar
Bouillon, J. Influence of temperature on the histological evolution of the ovotestis of Cepea nemoralis L. Nature 177, (1956). 142143.Google Scholar
Cameron, R. A. D. (1978). Historical and ecological determinants of some land mollusc faunas in Britain.. In Atti IV Congresso della Societa Malacologia Italiana Siena, pp. 193194.Google Scholar
Caudill, M, and Butler, C. (1992). Understanding Neural Networks: Basic Networks. Vol. 1, MIT Press, Cambridge, MA.Google Scholar
Chaline, J., and Brochet, G. Les rongeurs—Leurs significations paléoécologiques et paléoclimatiques. Campy, M., Chaline, J., and Vuillemey, M. La Baume de Gigny (Jura). (1989). Editions du Centre National de la Recherche Scientifique, Paris. 97109.Google Scholar
Chevallier, H. Facteurs de croissance chez des gastéropodes pulmonés terrestres paléarctiques en élevage. Haliotis 12, (1982). 2946.Google Scholar
Dainton, B. The activity of slugs. I: The induction of activity by changing temperature. Journal of Experimental Biology 31, (1954). 165187.Google Scholar
Elias, S.A. The Mutual Climatic Range method of paleoclimate reconstruction based on insect fossils: New applications and interhemispheric comparisons. Quaternary Science Reviews 16, (1997). 12171225.Google Scholar
Elias, S.A. Late Pleistocene climates of Beringia, based on analysis of fossil beetles. Quaternary Research 53, (2000). 229235.CrossRefGoogle Scholar
Elias, S.A., Andrews, J.T., and Anderson, K.H. Insights on the climatic constraints on the beetle fauna of coastal Alaska, USA, derived from the Mutual Climatic Range method of paleoclimate reconstruction. Arctic, Antarctic and Alpine Research 31, (1999). 9498.CrossRefGoogle Scholar
Fauquette, S., Guiot, J., and Suc, J.-P. A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 144, (1998). 183201.Google Scholar
Franc, A. Sous-classe des Pulmonés. Grassé, P.-P. Traité de zoologie—Mollusques gastéropodes et scaphopodes. (1968). Masson et Cie, Paris. 325607.Google Scholar
Fritts, H.C., Blasing, T.J., Hayden, B.P., and Kutzbach, J.E. Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. Journal of Applied Meteorology 10, (1971). 845864.Google Scholar
Gasse, F., and Tekaia, F. Transfer functions for estimating paleoecological conditions (pH) from East African diatoms. Hydrobiologia 103, (1983). 8590.CrossRefGoogle Scholar
Gomot, L., and Griffond, B. Action of epigenetic factors on the expression of hermaphroditism in the snail Helix aspersa . Comparative Biochemistry and Physiology A 104, (1993). 195199.CrossRefGoogle Scholar
Gomot, P., Griffond, B., and Gomot, L. Effets de la température sur la spermatogénèse d'Escargots Helix aspersa maintenus en repos artificiel. Comptes rendus de l'Académie des Sciences de Paris 302, (1986). 2732.Google Scholar
Guiot, J. ARMA techniques for modelling tree-ring response to climate and for reconstructing variations of paleoclimates. Ecological Modelling 33, (1986). 149171.CrossRefGoogle Scholar
Guiot, J. Late Quaternary climatic change in France estimated from multivariate pollen time series. Quaternary Research 28, (1987). 100118.Google Scholar
Guiot, J. Statistical analyses of biospherical variability. Duplessy, J.-C., and Spyridakis, M.-T. NATO ASI Series, Vol. I22: Long-Term Climatic Variations. (1994). Springer-Verlag, Heidelberg. 299334.Google Scholar
Huntley, B., and Prentice, C. July temperatures in Europe from pollen data. Science 241, (1988). 687690.Google Scholar
Ihaka, R., and Gentleman, R. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, (1996). 299314.Google Scholar
Imbrie, J., and Kipp, N.G. A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Carribean core. Turekian, K.K. The Late Cenozoic Glacial Ages. (1971). Yale Univ. Press, New Haven. 71181.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., and Saltzman, B. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. Berger, A., Imbrie, J., Hays, J., and Kukla, G. Milankovitch and Climate. (1984). Reidel, Dordrecht. 269305.Google Scholar
Kerney, M.P., Cameron, R.A.D., and Jungbluth, J.H. Die Landschnecken Nord-und Mitteleuropas. (1983). Google Scholar
Langley, C.K. Thermal acclimation of a central neurone of Helix aspersa. I. Effects of temperature on electrolyte levels in the haemolymph. Journal of Experimental Biology 78, (1979). 181186.Google Scholar
Leemans, R, and Cramer, W. (1991). The IIASA Climate Database for mean monthly values of temperature. precipitation and cloudiness on a global terrestrial grid, International Institute of Applied Systems Analysis, .Google Scholar
Light, J.M., and Killeen, I. Cartographie de la répartition des mollusques continentaux dans les ı̂les britanniques. Vertigo 6, (1996). 3340.Google Scholar
Limondin, N. Paysages et Climats Quaternaires par les Mollusques Continentaux. (1990). Univ. Paris I Panthéon-Sorbonne, Google Scholar
Lozek, V. Quartärmollusken der Tschechoslowakei. Rozpravy Ustredniho ustuvu geologického 31, (1964). 1374.Google Scholar
Magnin, F. Mollusques Continentaux et Histoire Quaternaire des Milieux Méditerrannéens (Sud-Est de la France, Catalogne). (1991). Univ. Aix-Marseille II, Google Scholar
Montuire, S. Mammalian faunas as indicators of environmental and climatic changes in Spain during the Pliocene-Quaternary transition. Quaternary Research 52, (1999). 129137.Google Scholar
Mourguiart, P., Corrège, T., Wirrmann, D., Argollo, J., Montenegro, M.E., Pourchet, M., and Carbonel, P. Holocene paleohydrology of lake Titicaca estimated from an ostracod-based transfer function. Palaeogeography, Palaeoclimatology, Palaeoecology 143, (1998). 5172.Google Scholar
Nilsson, A. De pa land levande molluskerna inom Abisko Nationalpark. Redogörelse för undersökningar utförda aren 1966–1967. (1968). Stencil, Landskrona.Google Scholar
Nilsson, A. Terrestrial mollusks from the western part of the Torneträsk area. Fauna norrlandica 5, (1987). 216.Google Scholar
Overpeck, J.T., Webb, T. III, and Prentice, I.C. Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, (1985). 87108.Google Scholar
Pelseneer, P. Essai d'Ethologie Zoologique d'Après l'Étude des Mollusques. (1935). Fondation A. de Potter, Google Scholar
Peyron, O. Le Climat de l'Europe et de l'Afrique au dernier maximum glaciaire et à l'Holocène moyen. (1998). Univ. Aix-Marseille III, Google Scholar
Phifer, C.B., and Prior, D.J. Body hydratation and haemolymph osmolality affect feeding and its neural correlate in the terrestrial gastropod, Limax maximus . Journal of Experimental Biology 118, (1985). 405421.Google Scholar
Pokryszko, B.M. Snail fauna of calcareous fens in the Dovrefjell (Norway). Meier-Brook, C. Proceedings of the Tenth International Malacological Congress. (1989). Unitas Malacologica, Tübingen. 443446.Google Scholar
Puisségur, J.-J. Mollusques continentaux quaternaires de Bourgogne. Significations stratigraphiques et climatiques. Rapports avec d'autres faunes boréales de France. Mémoires géologiques de l'Université de Dijon 3, (1976). 1241.Google Scholar
Rollo, D.C. Endogenous and exogenous regulation of activity in Deroceras reticulatum, a weather-sensitive terrestrial slug. Malacologia 33, (1991). 199220.Google Scholar
Rousseau, D.-D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research 36, (1991). 195209.CrossRefGoogle Scholar
Rousseau, D.-D. Holocene environmental signals from mollusk assemblages in Burgundy (France). Quaternary Research 40, (1993). 237253.Google Scholar
Rousseau, D.-D., and Puisségur, J.-J. A 350,000-years climatic record from the loess sequence of Achenheim, Alsace, France. Boreas 19, (1990). 203216.Google Scholar
Rousseau, D.-D., Limondin, N., Magnin, F., and Puisségur, J.-J. Temperature oscillations over the last 10,000 years in western Europe estimated from terrestrial mollusc assemblages. Boreas 23, (1994). 6673.Google Scholar
Rousseau, D.-D., Preece, R., and Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, (1998). 651654.Google Scholar
Rousseau, D.-D., Zöller, L., and Valet, J.-P. Late Pleistocene climatic variations at Achenheim, France, based on a magnetic susceptibility and TL chronology of loess. Quaternary Research 49, (1998). 255263.Google Scholar
Sacchi, C.F., and Testard, F. Ecologie Animale—Organismes et Milieu. (1971). Doin, Paris.Google Scholar
Uminski, T. Life cycles in some Vitrinidae (Mollusca, Gastropoda) from Poland. Annales Zoologici 33, (1975). 1733.Google Scholar
Waelbroeck, C., Labeyrie, L., Duplessy, J.-C., Guiot, J., Labracherie, M., Leclaire, H., and Duprat, J. Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography 13, (1998). 272283.CrossRefGoogle Scholar
Wallen, C.C. World Survey of Climatology. Volume 5. Climates of Northern and Western Europe. (1970). Elsevier, Amsterdam/London/New York.Google Scholar
Watabe, N. Shell repair. Russell-Hunter, W.D. The Mollusca. (1983). Academic Press, New York. 289316.Google Scholar
Webb, T. III, and Bryson, R.A. Late- and postglacial climatic change in the northern Midwest, USA: Quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research 2, (1972). 70115.Google Scholar