Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T16:03:05.908Z Has data issue: false hasContentIssue false

Paleoclimatic implications of the spatial patterns of modern and LGM European land-snail shell δ18O

Published online by Cambridge University Press:  20 January 2017

Natalie M. Kehrwald*
Affiliation:
University of Venice, IDPA-CNR, Calle Larga S. Marta 2137, I-30123 Venice, Italy
William D. McCoy
Affiliation:
Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA
Jeanne Thibeault
Affiliation:
Department of Geography, University of Connecticut, Storrs, CT 06269, USA
Stephen J. Burns
Affiliation:
Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA
Eric A. Oches
Affiliation:
Department of Natural and Applied Sciences, Bentley University, Waltham, MA 02452, USA
*
Corresponding author. IDPA-CNR, Istituto per la Dinamica dei Processi Ambientali – Consiglio Nazionale delle Ricerche, Calle Larga Santa Marta 2137, I-30123, Venice, Italy. Fax: +39 041 234 8628. E-mail address:[email protected] (N.M. Kehrwald).

Abstract

The oxygen isotopic composition of land-snail shells may provide insight into the source region and trajectory of precipitation. Last glacial maximum (LGM) gastropod shells were sampled from loess from Belgium to Serbia and modern land-snail shells both record δ18O values between 0‰ and − 5‰. There are significant differences in mean fossil shell δ18O between sites but not among genera at a single location. Therefore, we group δ18O values from different genera together to map the spatial distribution of δ18O in shell carbonate. Shell δ18O values reflect the spatial variation in the isotopic composition of precipitation and incorporate the snails' preferential sampling of precipitation during the warm season. Modern shell δ18O decreases in Europe along a N–S gradient from the North Sea inland toward the Alps. Modern observed data of isotopes in precipitation (GNIP) demonstrate a similar trend for low-altitude sites. LGM shell δ18O data show a different gradient with δ18O declining toward the ENE, implying a mid-Atlantic source due to increased sea ice and a possible southern displacement of the westerly jet stream. Balkan LGM samples show the influence of a Mediterranean source, with δ18O values decreasing northward.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araguas-Araguas, L., Froehlich, K., and Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes 14, (2000). 13411355.3.0.CO;2-Z>CrossRefGoogle Scholar
Balakrishnan, M., and Yapp, C.J. Flux balance models for the oxygen and carbon isotope composition of land snail shells. Geochimica et Cosmoschimica Acta 68, (2004). 20072024.CrossRefGoogle Scholar
Balakrishnan, M., Yapp, C.J., Theler, J.L., Carter, B.J., and Wycoff, D.G. Environmental significance of 13C/12C and 18O/16O values of modern land-snail shells from the southern great plains of North America. Quaternary Research 63, (2005). 1530.CrossRefGoogle Scholar
Boenick, W., and Frechen, M. The loess record in sections at Koblenz-Metternich and Tonchesberg in the Middle Rhine Area. Quaternary International 76/77, (2001). 201209.CrossRefGoogle Scholar
Buch, M.W., and Zöller, L. Gliederung und Thermolumineszenz-Chronologie der Würmloesse in Raum Regensburg, Eiszeitalter und Gegenwart. Science 40, (1990). 6384.Google Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., and Lo Vetro, D. Stable isotope composition of Late Glacial land snail shells from Grotta del Romito (Southern Italy): paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 254, (2007). 550560.CrossRefGoogle Scholar
Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmogenica Acta 12, (1957). 133149.CrossRefGoogle Scholar
Craig, H. Standard for reporting concentvaluesns of deuterium and oxygen-18 in natural waters. Science 133, 3467 (1961). 18331834.CrossRefGoogle ScholarPubMed
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, (1964). 436468.CrossRefGoogle Scholar
Dawson, A.G. Ice Age earth; late Quaternary geology and climate. Routledge, London. Denton, G.H., and Hughes, T.J. The Last Great Ice Sheets. (1992). Wiley-Interscience, New York.Google Scholar
Frechen, M. Upper Pleistocene loess stratigraphy in southern Germany. Quaternary Geochronology 18, (1999). 243269.Google Scholar
Frechen, M., Zander, A., Cílek, V., and Ložek, V. Loess chronology of the Last Interglacial/Glacial cycle in Bohemia and Moravia, Czech Republic. Quaternary Science Reviews 18, (1999). 14671493.CrossRefGoogle Scholar
Frechen, M., van Vleit-Lanoë, B., and Van den Haute, P. The upper Pleistocene loess record at Harmignies/Belgium—high resolution terrestrial archive of climate forcing. Palaeogeography, Palaeoclimatology, Palaeoecology 173, (2001). 175195.CrossRefGoogle Scholar
Frenzel, B., Pesci, B., and Velichko, A.A. Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. (1992). INQUA/Hungarian Academy of Sciences, Budapest.Google Scholar
Ganopolsksi, A., and Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, (2001). 153158.CrossRefGoogle Scholar
Goodfriend, G.A. Holocene trends in 18O in land snail shells from the Negev desert and their implications for changes in rainfall source areas. Quaternary Research 11, (1991). 417426.CrossRefGoogle Scholar
Goodfriend, G.A. The use of land snail shells in paleoenvironmental reconstruction. Quaternary Research 35, (1992). 417426.CrossRefGoogle Scholar
Goodfriend, G.A., and Ellis, G.L. Stable carbon and oxygen isotopic variations in modern Rabdotus land snail shells in the southern Great Plains, USA, and their relation to environment. Geochimica et Cosmochimica Acta 66, (2002). 19872002.CrossRefGoogle Scholar
Goodfriend, G.A., Magaritz, M., and Gat, J.R. Stable isotope composition of land shail body water and its relation to environmental waters and shell carbonate. Geochimica et Cosmochimica Acta 53, (1989). 32153221.CrossRefGoogle Scholar
Grossman, E.L., and Ku, T.L. Oxygen and carbon isotope fractionation in biogenic aragonite-temperature effects. Chemical Geology 59, (1986). 5974.CrossRefGoogle Scholar
Guiot, J., deBeaulieu, J.-L., Cheffafi, R., David, F., Ponel, P., and Reille, M. The climate in Western Europe during the last glacial/interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, (1993). 7394.CrossRefGoogle Scholar
Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J., and Cheddadi, R. Inverse vegetation modeling: a tool to reconstruct palaeoclimates under changed CO2 conditions. Ecological Modelling 127, (2000). 119140.CrossRefGoogle Scholar
Hatté, C., Fontugne, M., Rousseau, D.D., Antoine, P., Zöller, L., Tisnérat-Laborde, N., and Bentaleb, I. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology 26, (1988). 583586.2.3.CO;2>CrossRefGoogle Scholar
Kageyama, M., Laîne, A., Abe-Ouchi, A., Braconnot, P., Cortijio, E., Crucifix, M., de Vernal, A., Guiot, J., Hewett, A., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Melé, A., Vettoretti, G., Weber, S.L., Yu, Y. MARGO Project Members Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quaternary Science Reviews 25, (2006). 20822102.CrossRefGoogle Scholar
Kerney, M.P., Cameron, R.A.D., and Riley, G. A Field Guide to the Land Snails of Britain and Northwest Europe. (1987). William Collins Sons and Co., London.Google Scholar
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayea, A., Weinelt, M., Chen, M.-T., Mix, A.C., Barrows, T.T., Cortijo, E., Duprat, J., Juggins, S., and Waelcroeck, C. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibvaluesn data sets and its application to glacial Atlantic and Pacific oceans. Quaternary Science Reviews 24, (2005). 951998.CrossRefGoogle Scholar
Lécolle, P. The oxygen isotope composition of land snail shells as a climatic indicator: applications to hydrogeology and paleoclimatology. Chemical Geology 58, (1985). 157181.CrossRefGoogle Scholar
Lécolle, P., and Létolle, R. Paléotempératures déduites de la composition isotopique des tests de Gastéropodes terrestres and des travertins de al vallée de la Seine. Lécolle, F. Les Tufs et Travertins Quaternaires des Bassins de la Seine et de la Somme, et des Regions Limitrophes, Centre de Géomorphologie, Caen, France, Bull. no. 38. (1990). 7992.Google Scholar
Leone, G., Bonadonna, F., and Zanchetta, G.l. Stable isotope record in mollusca and pedogenic carbonate from Late Pliocene soils of Central Italy. Palaeogeography Palaeoclimatology Palaeoecology 163, (2000). 115131.CrossRefGoogle Scholar
Lösceher, M., and Zöller, L. Lössforschung im nordwestlichen Kraichgau. Jahresberichte und Mitteilungen des Oberrheinischen Geologishen Vereines 83, (2001). 317326.CrossRefGoogle Scholar
Ložek, V. Holocene interglacial in Central Europe and its land snails. Quaternary Research 2, 3 (1972). 327334.CrossRefGoogle Scholar
Magaritz, M., Heller, J., and Volokita, M. Land–air boundary environment as recorded by the 18O/16O and 13C/12C isotope values in the shells of land snails. Earth and Planetary Science Letters 52, (1981). 101106.CrossRefGoogle Scholar
Mix, A., Bard, E., and Schneider, R. Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG). Quaternary Science Reviews 20, (2001). 627657.CrossRefGoogle Scholar
Oches, E.A., and McCoy, W.D. Amino acid geochronology applied to the correlation and dating of Central European loess deposits. Quaternary Science Reviews 14, (1995). 767782.CrossRefGoogle Scholar
Oches, E.A., and McCoy, W.D. Aminostratigraphic evaluation of conflicting age estimates for the “Young Loess” of Hungary. Quaternary Research 44, (1995). 160170.CrossRefGoogle Scholar
Oches, E.A., McCoy, W.D., and Gneisser, D. Aminostratigraphic correlation of loess–paleosol sequences across Europe. Goodfriend, G.A., Collins, K.J., Fogel, M.L., Macko, S.A., and Wehmiller, J.F. Perspectives in Amino Acid and Protein Geochemistry. (2000). Oxford University Press, NY.Google Scholar
Pésci, M. Lithostratigraphical subdivision of the loess profiles at Paks. Act Geologica Academiae Scientiarium Hungaricae 22, (1979). 409418.Google Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., and Andrieu, V. Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research 49, (1998). 183196.CrossRefGoogle Scholar
Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Magny, M., Millet, L., Ruffaldi, P., Van Campo, E., and Yu, G. Lateglacial climate in the Jura Mountains (France) based on different quantitative reconstruction approaches from pollen, lake-levels and chironomids. Quaternary Research 64, (2005). 197211.CrossRefGoogle Scholar
Pye, K. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, (1995). 653667.CrossRefGoogle Scholar
Renssen, H., and Vandenberghe, J. Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation. Quaternary Science Reviews 22, (2003). 209223.CrossRefGoogle Scholar
Rousseau, D.D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J.M., Moine, O., Labonne, M., Bentaleb, I., and Jolly, D. Abrubt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. Quaternary Science Reviews 21, (2002). 15771582.CrossRefGoogle Scholar
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. Iosoptic pattern in modern global precipitation. Swart, P.K., Lohman, K.C., McKenzie, J., and Savin, S. Climate Change in Continental Isotopic Records. Geophysical Monograph vol. 78, (1993). American Geophysical Union, Washington. 136.Google Scholar
Shrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., and McManus, J.F. The oxygen isotopic composition of seawater during the last glacial maximum. Quaternary Science Reviews 21, (2002). 331342.CrossRefGoogle Scholar
Smith, L.M., Miller, G.H., Otto-Bliesner, B., and Shin, S. Sensitivity of the Northern Hemisphere climate system to extreme changes in Holocene Arctic sea ice. Quaternary Science Reviews 22, (2003). 645658.CrossRefGoogle Scholar
Stevens, T. (2003). Aminostratigraphy of mid to late Pleistocene loess in middle Europe. M.S. Thesis, University of Massachusetts, Amherst.Google Scholar
Thompson, R., and Cheny, S. Raising Snails. National Agriculture Library Special Reference Briefs. NAL SRB 96-05. (1996). Google Scholar
Ward, D., and Slowtow, R. The effects of water availability on the life history of the desert snail Trochoidea seetzeni: an experimental field manipulation. Oecologia 90, (1992). 572580.CrossRefGoogle ScholarPubMed
Yanes, Y., Romanek, C.S., Delgado, A., Brant, H.A., Noakes, J.E., Alonso, M.R., and Ibanez, M. Oxygen and carbon stable isotopes of modern land snail shells as environmental indicators from a low-latitude oceanic island. Geochimica et Cosmochimica Acta 73, (2009). 40774099.CrossRefGoogle Scholar
Yapp, C.J. Oxygen and carbon isotope measurements of land-snail shell carbonate. Geochimica et Cosmochimica Acta 43, (1979). 629635.CrossRefGoogle Scholar
Yates, T.J.S., Spiro, B.F., and Vita-Finzi, C. Stable isotope variability and the selection of terrestrial mollusc shell samples for C-14 dating. Quaternary International 87, (2002). 87100.CrossRefGoogle Scholar
Zanchetta, G., Leone, G., Fallick, A.E., and Bonadonna, F.P. Oxygen isotope composition of living land snail shells: data from Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 223, (2005). 2033.CrossRefGoogle Scholar
Zöller, L., and Wagner, G. Thermoluminescence dating of loess – recent developments. Quaternary International 7/8, (1990). 119128.CrossRefGoogle Scholar
Zöller, L., Stremme, H., and Wagner, G. Thermolumineszenz-Datierung and Löss-Paläoboden-Sequenzen von Nieder-. Mittel-. Und Oberrhein/Bundesrepublik Deutschland. Chemical Geology (Isotope Geoscience Section) 73, (1988). 3962.CrossRefGoogle Scholar
Supplementary material: PDF

Kehrwald et al. Supplementary Material

Supplementary Material

Download Kehrwald et al. Supplementary Material(PDF)
PDF 115.7 KB