Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T16:19:45.288Z Has data issue: false hasContentIssue false

Paleoclimate and growth rates of speleothems in the northwestern Iberian Peninsula over the last two glacial cycles

Published online by Cambridge University Press:  20 January 2017

Heather M. Stoll*
Affiliation:
Department of Geology, University of Oviedo, Oviedo 33005, Spain
Ana Moreno
Affiliation:
Instituto Pirenaico de Ecolog"a (IPE)-CSIC, Avda. Monta"ana 1005, 50059 Zaragoza, Spain
Ana Mendez-Vicente
Affiliation:
Department of Geology, University of Oviedo, Oviedo 33005, Spain
Saul Gonzalez-Lemos
Affiliation:
Department of Geology, University of Oviedo, Oviedo 33005, Spain
Montserrat Jimenez-Sanchez
Affiliation:
Department of Geology, University of Oviedo, Oviedo 33005, Spain
Maria Jose Dominguez-Cuesta
Affiliation:
Department of Geology, University of Oviedo, Oviedo 33005, Spain
R. Lawrence Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
Hai Cheng
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA Institute of Global Environmental Change, Xian Jiaotong University, Xian 710049, China
Xianfeng Wang
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
*
*Corresponding author.Present address: Division of Earth Sciences, Nanyang Technological University, 639798, Singapore. E-mail address:[email protected] (H.M. Stoll).

Abstract

Speleothem growth requires humid climates sufficiently warm to stimulate soil CO2 production by plants. We compile 283 U/Th dates on 21 stalagmites from six cave systems in the NW coast of Spain to evaluate if there are patterns in stalagmite growth that are evidence of climatic forcing. In the oldest stalagmites, from marine oxygen isotope stage (MIS) 7–5, growth persists through the glacial period. Hiatuses and major reductions in growth rate occur during extreme minima in summer insolation. Stalagmites active during the last interglaciation cease growth at the MIS 5–4 boundary (74 ka), when regional sea-surface temperature cooled significantly. During MIS 3, only two stalagmites grew; rates were highest between 50 and 60 ka during the maximum in summer insolation. One stalagmite grew briefly at 41 ka, 36.5 and 28.6 ka, all during warm phases of the Dansgaard–Oeschger cycles. A pronounced Holocene optimum in stalagmite growth occurs from 9 to 6 ka. The cessation of most growth by 4.1 ka, coincident with broad increases in aridity over the Mediterranean and areas influenced by the North African Monsoon, suggest that regions such as NW Spain, with dominant Atlantic moisture sources, also experienced increased aridity at this time.

Type
Short Communication
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Division of Earth Sciences, Nanyang Technological University, 639798, Singapore.

References

Baldini, J.U.L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., Railsback, L.B., (2005). Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England. Earth and Planetary Science Letters 240, 486494.Google Scholar
Benito, G., Sancho, C., Pena, J.L., Machado, M.J., Rhodes, E.J., (2010). Large-scale karst subsidence and accelerated fluvial aggradation during MIS6 in NE Spain: climatic and paleohydrological implications. Quaterary Science Reviews 29, 26942704.CrossRefGoogle Scholar
Breecker, D., Quinn, A., Quade, J., Banner, J.L., Ball, C., Meyer, K., (2012). The source of carbon in cave air CO2 under mixed woodland and grassland vegetation. Goldschmidt, Montreal.Google Scholar
Brook, G.A., Folkoff, M.E., Box, E.O., (1983). A world model of soil carbon-dioxide. Earth Surface Processes and Landforms 8, 7988.Google Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., Gil-Romera, G., Badal, E., Carrión-Marco, Y., López-Merino, L., López-Sáez, J.A., Fierro, E., Burjachs, F., (2010). Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review of Palaeobotany and Palynology 162, 458475.Google Scholar
Cheng, H., Fleitmann, D., Edwards, R.L., Wang, X.F., Cruz, F.W., Auler, A.S., Mangini, A., Wang, Y.J., Kong, X.G., Burns, S.J., Matter, A., (2009). Timing and structure of the 8.2 kyr BP event inferred from delta O-18 records of stalagmites from China, Oman, and Brazil. Geology 37, 10071010.Google Scholar
Fletcher, W.J., Sánchez Goñi, M.F., (2008). Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, 451464.CrossRefGoogle Scholar
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., Hodell, D.A., Curtis, J.H., (2007). Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22, .Google Scholar
Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G., Wintle, A.G., (1998). River response to high-frequency climate oscillations in southern Europe over the past 200 k.y. Geology 26, 275278.Google Scholar
Gimeno, L., Nieto, R., Trigo, R., Vicente-Serrano, S., Lopez-Moreno, J.I., (2010). Where does the Iberian Peninsula moisture come from? An answer based on a lagrangian approach. Journal of Hydrometeorology 11, 421436.Google Scholar
Gonzalez-Samperiz, P., Valero-Garces, B.L., Moreno, A., Morellon, M., Navas, A., Machin, J., Delgado-Huertas, A., (2008). Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: saline lake records. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 157181.Google Scholar
Kaufmann, G., Dreybrodt, W., (2004). Stalagmite growth and palaeo-climate: an inverse approach. Earth and Planetary Science Letters 224, 529545.Google Scholar
Leira, M., (2005). Diatom responses to Holocene environmental changes in a small lake in northwest Spain. Quaternary International 140-141, 90102.Google Scholar
Lewis, C.J., McDonald, E.V., Sancho, C., Luis Pena, J., Rhodes, E.J., (2009). Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, 141152.CrossRefGoogle Scholar
Lozano, M.V., Sancho, C., Arenas, C., Vázquez-Urbez, M., Ortiz, J.E., Torres, T., Pardo, G., Osácar, M.C., Auqué, L., (2012). Análisis preliminar de las tobas cuaternarias del río Ebrón (Castielfabib, Valencia, Cordillera Ibérica). Geogaceta 51, 5558.Google Scholar
Martín-Chivelet, J., Muñoz-García, M.B., Edwards, R.L., Turrero, M.J., Ortega, A.I., (2011). Land surface temperature changes in Northern Iberia since 4000 yr BP, based on < delta > 13C of speleothems. Global and Planetary Change 77, 112.CrossRefGoogle Scholar
Martin-Puertas, C., Valero-Garces, B., Mata, M.P., Moreno, A., Giralt, S., Martinez-Ruiz, F., Jimenez-Espejo, F., (2011). Geochemical processes in a Mediterranean Lake: a high-resolution study of the last 4000 years in Zonar Lake, southern Spain. Journal of Paleolimnology 46, 405421.Google Scholar
Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., Stocker, T.F., (2007). Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502507.Google Scholar
Moreno, A., Stoll, H., Jimenez-Sanchez, M., Cacho, I., Valero-Garces, B., Ito, E., Edwards, R.L., (2010). A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change 71, 218231.CrossRefGoogle Scholar
Moreno, A., López-Merino, L., Leira, M., Marco-Barba, J., González-Sampériz, P., Valero-Garcés, B., López-Sáez, J., Santos, L., Mata, P., Ito, E., (2011). Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). Journal of Paleolimnology 46, 327349.Google Scholar
Muñoz-García, M.B., Martín-Chivelet, J., Rossi, C., Ford, D.C., Schwarcz, H.P., (2007). Chronology of Termination II and the Last Interglacial Period in North Spain based on stable isotope records of stalagmites from Cueva del Cobre (Palencia). Journal of Iberian Geology 33, 1730.Google Scholar
Naughton, F., Sánchez-Goñi, M.F., Desprat, S., Turon, J.L., Duprat, J., Malaize, B., Joli, C., Cortijo, E., Drago, T., Freitas, M.C., (2007). Present-day and past (last 25000 years) marine pollen signal off western Iberia. Marine Micropaleontology 62, 91114.Google Scholar
Perez-Sanz, A., Gonzalez-Samperiz, P., Moreno, A., Valero-Garces, B., Gil-romera, G., Rieradevall, M., Tarrats, P., Belmonte, A., Morellon, M., Sancho, C., Sevilla, M., Navas, A., Mediterranean climate holocene variability in the western mediterranean basin: the basa de la mora sequence (Central Pyrenees, Ne Spain). Quaterary Science Reviews (in press).Google Scholar
Reed, J.M., Stevenson, T., Juggins, S., (2001). A multi-proxy record of Holocene climatic change in southwestern Spain: the Laguna de Medina, Cádiz. The Holocene 11, 707719.CrossRefGoogle Scholar
Roberts, N., Eastwood, W., Kuzucuoglu, C., Fiorentino, G., Caracuta, V., (2011). Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene 21, 147162.CrossRefGoogle Scholar
Sanchez-Goni, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., (2008). Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151.CrossRefGoogle Scholar
Sancho, C., Arenas, C., Pardo, G., Vázquez-Urbez, M., Hellstrom, J., Ortiz, J.E., Torres, T., Rhodes, E., Osácar, C., Auqué, L., (2010). Ensayo cronológico de las tobas cuaternarias del río Piedra (Cordillera Ibérica). Geogaceta 48, 3134.Google Scholar
Santos, L., Vidal Romani, J.R., Jalut, G., (2000). History of vegetation during the Holocene in the Courel and Queixa Sierras, Galicia, northwest Iberian Peninsula. Journal of Quaternary Science 15, 621632.Google Scholar
Shen, C.C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., Edmonds, H.N., (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, 165178.Google Scholar
Stoll, H., Asturias cave team, (2011). Integrating modern monitoring, cave mapping, and seasonal resolution trace element records in recent speleothems to interpret speleothem climate records from the last millennium to the penultimate glacial cycle in Northwest Spain. European Geoscience Union General Assembly, (pp. EGU2011-7111-2011).Google Scholar
Stoll, H., Mueller, W., Prieto, M., (2012). I-STAL, a model for interpretation of Mg/Ca, Sr/Ca and Ba/Ca variations in speleothems and its forward and inverse application on seasonal to millennial scales. Geochemistry, Geophysics, Geosystems 13, 27.CrossRefGoogle Scholar
Valero-Garcés, B., Moreno, A., Morellón, M., Corella, J.P., González-Sampériz, P., Mata, P., (2008). Cronología de las tobas de ladera del río de Las Parras (Cordillera Ibérica, Teruel). Benavente, J., Gracia, J. Trabajos de Geomorfología en España, 2006-2008. Sociedad Española de Geomorfología 7177.Google Scholar
Supplementary material: PDF

Stoll et al. Supplementary Material

Supplementary Material

Download Stoll et al. Supplementary Material(PDF)
PDF 413.3 KB