Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T18:55:29.091Z Has data issue: false hasContentIssue false

A palaeoenvironmental record of the Southern Hemisphere last glacial maximum from the Mount Cass loess section, North Canterbury, Aotearoa/New Zealand

Published online by Cambridge University Press:  14 December 2020

Peter C. Almond*
Affiliation:
Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
Sándor Gulyás
Affiliation:
Department of Geology and Paleontology, University of Szeged, Szeged 6722, Hungary
Pál Sümegi
Affiliation:
Department of Geology and Paleontology, University of Szeged, Szeged 6722, Hungary
Balázs P. Sümegi
Affiliation:
Department of Geology and Paleontology, University of Szeged, Szeged 6722, Hungary
Stephen Covey-Crump
Affiliation:
Department of Earth and Environmental Sciences, University of Manchester, ManchesterM13 9PL, UK
Merren Jones
Affiliation:
Department of Earth and Environmental Sciences, University of Manchester, ManchesterM13 9PL, UK
Joseph Shaw
Affiliation:
Department of Earth and Environmental Sciences, University of Manchester, ManchesterM13 9PL, UK
Andrew Parker
Affiliation:
Department of Earth and Environmental Sciences, University of Manchester, ManchesterM13 9PL, UK
*
*Corresponding author at: Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand. E-mail address: [email protected] (P.C. Almond).

Abstract

Calcareous loess in North Canterbury, eastern South Island, New Zealand (NZ), preserves subfossil bird bone, terrestrial gastropods, and eggshell, whose abundances and radiocarbon ages allowed us to reconstruct aspects of palaeoenvironment at high resolution through 25 to 21 cal ka BP. This interval includes millennial-scale climatic variability during the extended last glacial maximum (30–18 ka) of Australasia. Our loess palaeoclimatic record shows good correspondence with stadial and interstadial climate events of the NZ Climate Event Stratigraphy, which were defined from a pollen record on the western side of South Island. An interstade from 25.4 to 24 cal ka BP was warm but also relatively humid on eastern South Island, and loess grain size may indicate reduced vigour of the Southern Hemisphere westerly winds. The subsequent stade (24–22.6 cal ka BP) was drier, colder, and probably windier. The next interstade remained relatively dry on eastern South Island, and westerly winds remained vigorous. The 25.4–24 ka interstade is synchronous with Heinrich stade 2, which may have driven a southward migration of the subtropical front, leading to warming and wetting of northern and central South Island and retreat of Southern Alps glaciers at ca. 26.5 ka.

Type
Thematic Set: Southern Hemisphere Last Glacial Maximum (SHeMax)
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alloway, B.V., Lowe, D.J., Barrell, D.J.A., Newnham, R.M., Almond, P.C., Augustinus, P.C., Bertler, N.A.N., et al. , 2007. Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). Journal of Quaternary Science 22, 935.CrossRefGoogle Scholar
Almond, P.C., 1996. Loess, soil stratigraphy and Aokautere Ash on late Pleistocene surfaces in south Westland: interpretation and correlation with the glacial stratigraphy. Quaternary International 32–33, 163176.CrossRefGoogle Scholar
Almond, P.C., Moar, N.T., Lian, O.B., 2001. Reinterpretation of the glacial chronology of South Westland, New Zealand. New Zealand Journal of Geology and Geophysics 44, 115.CrossRefGoogle Scholar
Almond, P.C., Shanhun, F.L., Rieser, U., Shulmeister, J., 2007. An OSL, radiocarbon and tephra isochron-based chronology for Birdlings Flat loess at Ahuriri Quarry, Banks Peninsula, Canterbury, New Zealand. Quaternary Geochronology 2, 48.CrossRefGoogle Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., 2006. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.CrossRefGoogle Scholar
An, Z., Porter, S.C., 1997. Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 25, 603606.Google Scholar
Barnes, P.M., 1994. Continental extension of the Pacific Plate at the southern termination of the Hikurangi subduction zone: the North Mernoo Fault Zone, offshore New Zealand. Tectonics 13, 735754.CrossRefGoogle Scholar
Barrell, D.J., Almond, P.C., Vandergoes, M.J., Lowe, D.J., Newnham, R.M., NZ-INTIMATE Members, 2013. A composite pollen-based stratotype for inter-regional evaluation of climatic events in New Zealand over the past 30,000 years (NZ-INTIMATE project). Quaternary Science Reviews 74, 420.CrossRefGoogle Scholar
Barrows, T.T., Almond, P., Rose, R., Fifield, L.K., Mills, S.C., Tims, S.G., 2013. Late Pleistocene glacial stratigraphy of the Kumara-Moana region, west coast of South Island, New Zealand. Quaternary Science Reviews 74, 139159.CrossRefGoogle Scholar
Barrows, T.T., Juggins, S., De Deckker, P., Calvo, E., Pelejero, C., 2007a. Long-term sea surface temperature and climate change in the Australian-New Zealand region. Paleoceanography 22. https://doi.org/10.1029/2006PA001328.CrossRefGoogle Scholar
Barrows, T.T., Lehman, S.J., Fifield, L.K., De Deckker, P., 2007b. Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone. Science 318, 8689.CrossRefGoogle Scholar
Basher, R.E., Thompson, C.S., 1996. Relationship of air temperatures in New Zealand to regional anomalies in sea-surface temperature and atmospheric circulation. International Journal of Climatology 16, 405425.3.0.CO;2-T>CrossRefGoogle Scholar
Berger, G.W., Almond, P.C., Pillans, B.J., 2001a. Luminescence dating and glacial stratigraphy in Westland, New Zealand. New Zealand Journal of Geology and Geophysics 44, 2535.CrossRefGoogle Scholar
Berger, G.W., Pillans, B.J., Bruce, J.G., McIntosh, P.D., 2002. Luminescence chronology of loess-paleosol sequences from southern South Island, New Zealand. Quaternary Science Reviews 21, 18991913.CrossRefGoogle Scholar
Berger, G.W., Pillans, B.J., Tonkin, P.J., 2001b. Luminescence chronology of loess-paleosol sequences in Canterbury, South Island, New Zealand. New Zealand Journal of Geology and Geophysics 44, 501516.CrossRefGoogle Scholar
Bettis, E.A. III, Muhs, D.R., Roberts, H.M., Wintle, A.G., 2003. Last Glacial loess in the conterminous USA. Quaternary Science Reviews 22, 19071946.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12371248.CrossRefGoogle Scholar
Bostock, H.C., Hayward, B.W., Neil, H.L., Sabaa, A.T., Scott, G.H., 2015. Changes in the position of the Subtropical Front south of New Zealand since the last glacial period. Paleoceanography 30, 824844.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Callard, S.L., Newnham, R.M., Vandergoes, M.J., Alloway, B.V., Smith, C., 2013. The vegetation and climate during the Last Glacial Cold Period, northern South Island, New Zealand. Quaternary Science Reviews 74, 230244.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Cowie, J., 1964. Aokautere ash in the Manawatu district, New Zealand. New Zealand Journal of Geology and Geophysics 7, 6777.CrossRefGoogle Scholar
Darvill, C.M., Bentley, M.J., Stokes, C.R., Shulmeister, J., 2016. The timing and cause of glacial advances in the southern mid-latitudes during the last glacial cycle based on a synthesis of exposure ages from Patagonia and New Zealand. Quaternary Science Reviews 149, 200214.CrossRefGoogle Scholar
De Deckker, P., Moros, M., Perner, K., Jansen, E., 2012. Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nature Geoscience 5, 266269.CrossRefGoogle Scholar
Ding, Z.L., Yu, Z.W., Yang, S.L., Sun, J.M., Xiong, S.F., Liu, T.S., 2001. Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese loess plateau. Geophysical Research Letters 28, 20972100.CrossRefGoogle Scholar
Dong, J., Cheng, P., Eiler, J., 2020. Implications of the apparent 14C age of cultured Achatina fulica and the spatial features of 14C ages among modern land snail shells in China. Palaeogeography, Palaeoclimatology, Palaeoecology 545, art. no. 109654.CrossRefGoogle Scholar
Doughty, A.M., Schaefer, J.M., Putnam, A.E., Denton, G.H., Kaplan, M.R., Barrell, D.J., Andersen, B.G., Kelley, S.E., Finkel, R.C., Schwartz, R., 2015. Mismatch of glacier extent and summer insolation in Southern Hemisphere mid-latitudes. Geology 43, 407410.CrossRefGoogle Scholar
Dunbar, N.W., Iverson, N.A., Van Eaton, A.R., Sigl, M., Alloway, B.V., Kurbatov, A.V., Mastin, L.G., McConnell, J.R., Wilson, C.J., 2017. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports 7, 18.CrossRefGoogle ScholarPubMed
Eden, D.N., Froggatt, P.C., McIntosh, P.D., 1992. The distribution and composition of volcanic glass in late Quaternary loess deposits of southern South Island, New Zealand, and some possible correlations. New Zealand Journal of Geology and Geophysics 35, 6979.CrossRefGoogle Scholar
Eden, D.N., Hammond, A.P., 2003. Dust accumulation in the New Zealand region since the last glacial maximum. Quaternary Science Reviews 22, 20372052.CrossRefGoogle Scholar
Fitzharris, B.B., Clare, G.R., Renwick, J., 2007. Teleconnections between Andean and New Zealand glaciers. Global and Planetary Change 59, 159174.CrossRefGoogle Scholar
Forsyth, P., Barrell, D., Jongens, R., 2008. Geology of the Christchurch Area. 1:250,000. Institute of Geological and Nuclear Sciences Geological Map 16. GNS Science, Lower Hutt, New Zealand.Google Scholar
Goh, K.M., Molloy, B.P.J., Rafter, T.A., 1977. Radiocarbon dating of Quaternary loess deposits, Banks Peninsula, Canterbury, New Zealand. Quaternary Research 7, 177196.CrossRefGoogle Scholar
Goh, K.M., Tonkin, P.J., Rafter, T.A., 1978. Implications of improved radiocarbon dates of Timaru peats on Quaternary loess stratigraphy. New Zealand Journal of Geology and Geophysics 21, 463466.CrossRefGoogle Scholar
Grapes, R., Rieser, U., Wang, N., 2010. Optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand. Quaternary Geochronology 5, 164169.CrossRefGoogle Scholar
Hammond, A.P., Goh, K.M., Tonkin, P.J., Manning, M.R., 1991. Chemical pretreatments for improving the radiocarbon dates of peats and organic silts in a gley podzol environment: Grahams Terrace, North Westland. New Zealand Journal of Geology and Geophysics 34, 191194.CrossRefGoogle Scholar
Hayward, B.W., Sabaa, A.T., Kolodziej, A., Crundwell, M.P., Steph, S., Scott, G.H., Neil, H.L., Bostock, H.C., Carter, L., Grenfell, H.R., 2012. Planktic foraminifera-based sea-surface temperature record in the Tasman Sea and history of the Subtropical Front around New Zealand, over the last one million years. Marine Micropaleontology 82, 1327.CrossRefGoogle Scholar
Hewitt, A.E., 2010. New Zealand Soil Classification. 3rd ed. Manaaki Whenua Press, Lincoln, Canterbury, New Zealand.Google Scholar
Higham, T., 1994. Radiocarbon dating New Zealand prehistory with moa eggshell: some preliminary results. Quaternary Science Reviews 13, 163169.CrossRefGoogle Scholar
Hogg, A., Hua, Q., Blackwell, P., Niu, M., Buck, C., Guilderson, T., Heaton, T., Palmer, J., Reimer, P., Reimer, R., 2013. SHCal 13 Southern Hemisphere calibration, 0–50,000 cal. years BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Kohfeld, K., Graham, R., De Boer, A., Sime, L., Wolff, E., Le Quéré, C., Bopp, L., 2013. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quaternary Science Reviews 68, 7695.CrossRefGoogle Scholar
Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523535.CrossRefGoogle Scholar
Lorrey, A., Fauchereau, N., Stanton, C., Chappell, P., Phipps, S., Mackintosh, A., Renwick, J., Goodwin, I., Fowler, A., 2014. The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Climate Dynamics 42, 30393060.CrossRefGoogle Scholar
Lorrey, A., Fowler, A.M., Salinger, J., 2007. Regional climate regime classification as a qualitative tool for interpreting multi-proxy palaeoclimate data spatial patterns: a New Zealand case study. Palaeogeography, Palaeoclimatology, Palaeoecology 253, 407433.CrossRefGoogle Scholar
Lu, H., An, Z., 1998. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau. Science in China Series D: Earth Sciences 41, 626631.CrossRefGoogle Scholar
Mackintosh, A.N., Anderson, B.M., Lorrey, A.M., Renwick, J.A., Frei, P., Dean, S.M., 2017. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nature Communications 8, 113.CrossRefGoogle Scholar
Magee, J.W., Miller, G.H., Spooner, N.A., Questiaux, D.G., McCulloch, M.T., Clark, P.A., 2009. Evaluating Quaternary dating methods: radiocarbon, U-series, luminescence, and amino acid racemization dates of a late Pleistocene emu egg. Quaternary Geochronology 4, 8492.CrossRefGoogle Scholar
Milne, J.D.G., Clayden, B., Singleton, P.L., Wilson, A.D., 1995. Soil Description Handbook. Rev. ed. Manaaki Whenua Press, Lincoln, Canterbury, New Zealand.Google Scholar
Mullan, A., 1998. Southern hemisphere sea-surface temperatures and their contemporary and lag association with New Zealand temperature and precipitation. International Journal of Climatology 18, 817840.3.0.CO;2-E>CrossRefGoogle Scholar
National Institute of Water and Atmospheric Sciences, n.d. CliFlo: NIWA's National Climate Database on the Web (accessed February11, 2020). http://cliflo.niwa.co.nz.Google Scholar
Newnham, R.M., Lowe, D.J., Giles, T., Alloway, B.V., 2007. Vegetation and climate of Auckland, New Zealand, since ca.32 000 cal. yr ago: support for an extended LGM. Journal of Quaternary Science 22, 517534.CrossRefGoogle Scholar
NGRIP Members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.CrossRefGoogle Scholar
Nugteren, G., Vandenberghe, J., 2004. Spatial climatic variability on the Central Loess Plateau (China) as recorded by grain size for the last 250 kyr. Global and Planetary Change 41, 185206.CrossRefGoogle Scholar
Oskam, C.L., Haile, J., McLay, E., Rigby, P., Allentoft, M.E., Olsen, M.E., Bengtsson, C., Miller, G.H., Schwenninger, J.-L., Jacomb, C., 2010. Fossil avian eggshell preserves ancient DNA. Proceedings of the Royal Society of London B 277, 19912000.Google ScholarPubMed
Oskam, C.L., Jacomb, C., Allentoft, M.E., Walter, R., Scofield, R.P., Haile, J., Holdaway, R.N., Bunce, M., 2011. Molecular and morphological analyses of avian eggshell excavated from a late thirteenth century earth oven. Journal of Archaeological Science 38, 25892595.Google Scholar
Pahnke, K., Sachs, J.P., 2006. Sea surface temperatures of southern midlatitudes 0–160 kyr BP. Paleoceanography 21. https://doi.org/10.1029/2005PA001191.CrossRefGoogle Scholar
Pahnke, K., Zahn, R., 2005. Southern Hemisphere water mass conversion linked with North Atlantic climate variability. Science 307, 17411746.CrossRefGoogle ScholarPubMed
Pahnke, K., Zahn, R., Elderfield, H., Schulz, M., 2003. 340,000-year centennial-scale marine record of Southern Hemisphere Climatic Oscillation. Science 301, 948952.CrossRefGoogle ScholarPubMed
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Bettis, E.A. III, 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76, 114128.CrossRefGoogle Scholar
Pigati, J.S., Quade, J., Shahanan, T.M., Haynes, C.V. Jr, 2004. Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 3345.CrossRefGoogle Scholar
Pigati, J.S., Rech, J.A., Nekola, J.C., 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, 519532.CrossRefGoogle Scholar
Putnam, A.E., Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Birkel, S.D., Andersen, B.G., Kaplan, M.R., Finkel, R.C., Schwartz, R., Doughty, A.M., 2013. The Last Glacial Maximum at 44°S documented by a 10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand. Quaternary Science Reviews 62, 114141.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Rech, J.A., Pigati, J.S., Lehmann, S.B., McGimpsey, C.N., Grimley, D.A., Nekola, J.C., 2011. Assessing open-system behavior of 14 C in terrestrial gastropod shells. Radiocarbon 53, 325335.CrossRefGoogle Scholar
Schmidt, J., Almond, P.C., Basher, L., Carrick, S., Hewitt, A.E., Lynn, I.H., Webb, T.H., 2005. Modelling loess landscapes for the South Island, New Zealand, based on expert knowledge. New Zealand Journal of Geology and Geophysics 48, 117133.CrossRefGoogle Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Broderson, W.D., 2002. Field Book for Describing and Sampling Soils. Version 2.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.Google Scholar
Shulmeister, J., Goodwin, I., Renwick, J., Harle, K., Armand, L., McGlone, M.S., Cook, E., et al. , 2004. The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis. Quaternary International 118–119, 2353.CrossRefGoogle Scholar
Sigl, M., Fudge, T.J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J.R., Taylor, K.C., Welten, K.C., Woodruff, T.E., Adolphi, F., 2016. The WAIS Divide deep ice core WD2014 chronology. Part 2: Annual-layer counting (0–31 ka BP). Climate of the Past 12, 769786.CrossRefGoogle Scholar
Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.Google Scholar
Strand, P.D., Schaefer, J.M., Putnam, A.E., Denton, G.H., Barrell, D.J.A., Koffman, T.N.B., Schwartz, R., 2019. Millennial-scale pulsebeat of glaciation in the Southern Alps of New Zealand. Quaternary Science Reviews 220, 165177.CrossRefGoogle Scholar
Suggate, R.P., Almond, P.C., 2005. The Last Glacial Maximum (LGM) in western South Island, New Zealand: implications for the global LGM and MIS 2. Quaternary Science Reviews 24, 19231940.CrossRefGoogle Scholar
Sümegi, P., Hertelendi, E., 1997. Reconstruction of microenvironmental changes in the Kopasz Hill loess area at Tokaj (Hungary) between 15 and 70 ka BP. Radiocarbon 40, 855863.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., 2006. The Greenland ice core chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, 32583267.CrossRefGoogle Scholar
Toggweiler, J., Lea, D.W., 2010. Temperature differences between the hemispheres and ice age climate variability. Paleoceanography 25. https://doi.org/10.1029/2009PA001758.CrossRefGoogle Scholar
Tonkin, P.J., Webb, T., Almond, P.C., Creasy, G., Harrison, R., Hassall, L.J., Smith, C., 2015. Geology, Landforms and Soils of the Waipara and Waikari Regions of North Canterbury with an Emphasis on Lands Used for Viticulture. Lincoln University and Landcare Research, Canterbury, New Zealand.Google Scholar
Újvári, G., Kok, J.F., Varga, G., Kovács, J., 2016. The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews 154, 247278.CrossRefGoogle Scholar
Újvári, G., Molnár, M., Novothny, Á., Páll-Gergely, B., Kovács, J., Várhegyi, A., 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age–depth models for the last 40 ka. Quaternary Science Reviews 106, 140154.CrossRefGoogle Scholar
Vandenberghe, J., Huijzer, B.S., Mücher, H., Laan, W., 1998. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13, 471485.3.0.CO;2-T>CrossRefGoogle Scholar
Vandenberghe, J., Zhisheng, A., Nugteren, G., Huayu, L., Van Huissteden, K., 1997. New absolute time scale for the Quaternary climate in the Chinese Loess region by grain-size analysis. Geology 25, 3538.2.3.CO;2>CrossRefGoogle Scholar
Vandergoes, M.J., Hogg, A.G., Lowe, D.J., Newnham, R.M., Denton, G.H., Southon, J., Barrell, D.J.A., et al. , 2013a. A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. Quaternary Science Reviews 74, 195201.CrossRefGoogle Scholar
Vandergoes, M.J., Newnham, R.M., Denton, G.H., Blaauw, M., Barrell, D.J., 2013b. The anatomy of Last Glacial Maximum climate variations in south Westland, New Zealand, derived from pollen records. Quaternary Science Reviews 74, 215229.CrossRefGoogle Scholar
WAIS Divide Project Members, 2015. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661665.CrossRefGoogle Scholar
Walther, S., Roering, J., Almond, P., Hughes, M., 2009. Long-term biogenic soil mixing and transport in a hilly, loess-mantled landscape: Blue Mountains of southeastern Washington. Catena 79, 170178.CrossRefGoogle Scholar
Whittaker, T.E., Hendy, C.H., Hellstrom, J.C., 2011. Abrupt millennial-scale changes in intensity of Southern Hemisphere westerly winds during marine isotope stages 2–4. Geology 39, 455458.CrossRefGoogle Scholar
Williams, P.W., McGlone, M., Neil, H., Zhao, J.-X., 2015. A review of New Zealand palaeoclimate from the Last Interglacial to the global Last Glacial Maximum. Quaternary Science Reviews 110, 92106.CrossRefGoogle Scholar
Xu, B., Gu, Z., Han, J., Hao, Q., Lu, Y., Wang, L., Wu, N., Peng, Y., 2011. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6, 383389.CrossRefGoogle Scholar
Yang, Y., Wang, L., Wendroth, O., Liu, B., Cheng, C., Huang, T., Shi, Y., 2019. Is the laser diffraction method reliable for soil particle size distribution analysis? Soil Science Society of America Journal 83, 276287.CrossRefGoogle Scholar
Supplementary material: File

Almond et al. supplementary material

Almond et al. supplementary material

Download Almond et al. supplementary material(File)
File 5.7 MB