Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T02:07:45.611Z Has data issue: false hasContentIssue false

Optical Dating of Quartz: A Comment on Stokes and Gaylord (1993)

Published online by Cambridge University Press:  20 January 2017

Richard G. Roberts*
Affiliation:
Division of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, Caberra ACT 0200, Australia
Nigel A. Spooner
Affiliation:
Research Laboratory for Archaeology and the History of Art, Oxford University, 6 Keble Road, Oxford OXI 3QJ, United Kingdom
Danièle G. Questiaux
Affiliation:
Research Laboratory for Archaeology and the History of Art, Oxford University, 6 Keble Road, Oxford OXI 3QJ, United Kingdom
*
1To whom correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter to the Editor
Copyright
University of Washington

References

Brumby, S. (1992). Regression analysis of ESR/TL dose-response data. Nuclear Tracks and Radiation Measurements 20, 595599.Google Scholar
Griin, R., and MacDonald, P. D. M. (1989). Non-linear fitting of TL/ ESR dose-response curves. Applied Radiation and Isotopes 40, 10771080.Google Scholar
Griin, R., and Rhodes, E. J. (1992). Simulations of saturating exponential ESR/TL dose response curves—weighting of intensity values by inverse variance. Ancient TL 10, 5056.Google Scholar
Huntley, D. J. Godfrey-Smith, D. I., and Thewalt, M. L. W. (1985). Optical dating of sediments. Nature 313, 105107.Google Scholar
Lyons, R. G. Brennan, B. J., and Hosking, P. L. (1992). Estimation of accumulated dose and its uncertainties: Potential pitfalls in curve fitting. Ancient TL 10, 4249.Google Scholar
Roberts, R. G. Spooner, N. A., and Questiaux, D. G. (1993). Cautions on the use of extended duration preheats in the optical dating of quartz. Ancient TL 11, 4754.Google Scholar
Roberts, R. G. Spooner, N. A., and Questiaux, D. G. (in press a). Palaeodose underestimates caused by extended duration preheats in the optical dating of quartz. Radiation Measurements. Google Scholar
Roberts, R. G. Jones, R. Spooner, N. A. Head, M. J.. Murray, A. S., and Smith, M. A. (in press b). The human colonisation of Australia: Optical dates of 53,000 and 60,000 years bracket human arrival at Deaf Adder Gorge, Northern Territory. Quaternary Geochronology. Google Scholar
Smith, B. W. Aitken, M. J. Rhodes, E. J. Robinson, P. D., and Geldard, D. M. (1986). Optical dating: Methodological aspects. Radiation Protection Dosimetry 17, 229233.Google Scholar
Smith, B. W. Rhodes, E. J. Stokes, S., and Spooner, N. A. (1990a). The optical dating of sediments using quartz. Radiation Protection Dosimetry 34, 7578.Google Scholar
Smith, B. W. Rhodes, E. J. Stokes, S. Spooner, N. A., and Aitken, M. J. (1990b). Optical dating of sediments: Initial quartz results from Oxford. Archaeometry 32, 1931.Google Scholar
Stokes, S. (1991). Quartz-based optical dating of Weichselian coversands from the eastern Netherlands. Geologie en Mijnbouw 70, 327337.Google Scholar
Stokes, S. (1992). Optical dating of young (modem) sediments using quartz: Results from a selection of depositional environments. Quaternary Science Reviews 11, 153159.Google Scholar
Stokes, S., and Gaylord, D. R. (1993). Optical dating of Holocene dune sands in the Ferris dune field, Wyoming. Quaternary Research 39, 274281.Google Scholar
Wintle, A. G. (1987). Thermoluminescence dating of loess. Catena 9 (Suppl.), 103114.Google Scholar