Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T00:31:48.610Z Has data issue: false hasContentIssue false

New constraints on the last deglaciation of the Cordilleran Ice Sheet in coastal Southeast Alaska

Published online by Cambridge University Press:  14 May 2020

Alia J. Lesnek*
Affiliation:
Department of Geology, University at Buffalo, Buffalo, NY, 14209, USA
Jason P. Briner
Affiliation:
Department of Geology, University at Buffalo, Buffalo, NY, 14209, USA
James F. Baichtal
Affiliation:
Tongass National Forest, Thorne Bay, AK99919, USA
Alex S. Lyles
Affiliation:
Tongass National Forest, Thorne Bay, AK99919, USA
*
*Corresponding author at: University of New Hampshire, Department of Earth Sciences, Durham, NH03824, USA. E-mail: [email protected] (Alia Lesnek)

Abstract

Understanding marine-terminating ice sheet response to past climate transitions provides valuable long-term context for observations of modern ice sheet change. Here, we reconstruct the last deglaciation of marine-terminating Cordilleran Ice Sheet (CIS) margins in Southeast Alaska and explore potential forcings of western CIS retreat. We combine 27 new cosmogenic 10Be exposure ages, 13 recently published 10Be ages, and 25 new 14C ages from raised marine sediments to constrain CIS recession. Retreat from the outer coast was underway by 17 ka, and the inner fjords and sounds were ice-free by 15 ka. After 15 ka, the western margin of the CIS became primarily land-terminating and alpine glaciers disappeared from the outer coast. Isolated alpine glaciers may have persisted in high inland peaks until the early Holocene. Our results suggest that the most rapid phase of CIS retreat along the Pacific coast occurred between ~17 and 15 ka. This retreat was likely driven by processes operating at the ice-ocean interface, including sea level rise and ocean warming. CIS recession after ~15 ka occurred during a time of climatic amelioration in this region, when both ocean and air temperatures increased. These data highlight the sensitivity of marine-terminating CIS regions to deglacial climate change.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, J.A., Beget, J.E., Ager, T.A., Finney, B.P., 2010. Marine tephrochronology of the Mt. Edgecumbe Volcanic Field, Southeast Alaska, USA. Quaternary Research 73, 277292.CrossRefGoogle Scholar
Ager, T.A., 2019. Late Quaternary vegetation development following deglaciation of northwestern Alexander Archipelago, Alaska. Frontiers in Earth Science 7, 104.CrossRefGoogle Scholar
Ager, T.A., Carrara, P.E., Smith, J.L., Anne, V., Johnson, J., 2010. Postglacial vegetation history of Mitkof Island, Alexander Archipelago, southeastern Alaska. Quaternary Research 73, 259268.CrossRefGoogle Scholar
Baichtal, J.F., Carlson, R.J., 2010. Development of a model to predict the location of early Holocene habitation sites along the western coast of Prince of Wales Island and the outer islands, Southeast Alaska. Curr. Res. Pleistocene 27, e67.Google Scholar
Balco, G., 2017. Production rate calculations for cosmic-ray-muon-produced 10 Be and 26 Al benchmarked against geological calibration data. Quaternary Geochronology 39, 150173.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Bamber, J.L., Westaway, R.M., Marzeion, B., Wouters, B., 2018. The land ice contribution to sea level during the satellite era. Environmental Research Letters 13, 063008.CrossRefGoogle Scholar
Barrie, J.V., Conway, K.W., 1999. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quaternary Research 51, 113123.CrossRefGoogle Scholar
Bassis, J.N., Petersen, S.V., Mac Cathles, L., 2017. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332334.CrossRefGoogle ScholarPubMed
Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K., Severinghaus, J., 2018. Mean global ocean temperatures during the last glacial transition. Nature 553, 3944.CrossRefGoogle ScholarPubMed
Bierman, P.R., Marsella, K.A., Patterson, C., Davis, P.T., Caffee, M., 1999. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 2539.CrossRefGoogle Scholar
Blaise, B., Clague, J.J., Mathewes, R.W., 1990. Time of maximum Late Wisconsin glaciation, West Coast of Canada. Quaternary Research 34, 282295.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Carlson, R., 2007. Current models for the human colonization of the Americas: the evidence from Southeast Alaska. PhD dissertation, Cambridge University, England.Google Scholar
Carlson, R.J., Baichtal, J.F., 2015. A predictive model for locating early Holocene archaeological sites based on raised shell-bearing strata in Southeast Alaska, USA. Geoarchaeology 30, 120138.CrossRefGoogle Scholar
Carr, J.R., Stokes, C.R., Vieli, A., 2013. Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: twenty years of rapid change. Progress in Physical Geography 37, 436467.CrossRefGoogle Scholar
Carrara, P.E., Ager, T.A., Baichtal, J.F., 2007. Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation. Canadian Journal of Earth Sciences 44, 229244.CrossRefGoogle Scholar
Clague, J.J., 2017. Deglaciation of the Cordillera of Western Canada at the end of the Pleistocene. Cuadernos de Investigación Geográfica 43, 449466.CrossRefGoogle Scholar
Clague, J.J., 1989. Cordilleran Ice Sheet. In: Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Geological Society of America, Ottawa, pp. 4042.Google Scholar
Clague, J.J., Mathewes, R.W., Warner, B.G., 1982. Late Quaternary geology of eastern Graham Island, Queen Charlotte Islands, British Columbia. Canadian Journal of Earth Sciences 19, 17861795.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., Cheng, H., Kaufman, D.S., Liu, Z., 2012. Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences 109, E1134E1142.CrossRefGoogle ScholarPubMed
Corbett, L.B., Bierman, P.R., Graly, J.A., Neumann, T.A., Rood, D.H., 2013. Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland. Geological Society of America Bulletin 125, 15391553.CrossRefGoogle Scholar
Corbett, L.B., Bierman, P.R., Rood, D.H., 2016. An approach for optimizing in situ cosmogenic 10Be sample preparation. Quaternary Geochronology 33, 2434.CrossRefGoogle Scholar
Cosma, T., Hendy, I.L., 2008. Pleistocene glacimarine sedimentation on the continental slope off Vancouver Island, British Columbia. Marine Geology 255, 4554.CrossRefGoogle Scholar
Cosma, T.N., Hendy, I.L., Chang, A.S., 2008. Chronological constraints on Cordilleran Ice Sheet glaciomarine sedimentation from core MD02-2496 off Vancouver Island (western Canada). Quaternary Science Reviews 27, 941955.CrossRefGoogle Scholar
Darvill, C., Menounos, B., Goehring, B., Lian, O., Caffee, M., 2018. Retreat of the western Cordilleran Ice Sheet margin during the last deglaciation. Geophysical Research Letters 45, 97109720.CrossRefGoogle Scholar
Davies, M., Mix, A., Stoner, J., Addison, J., Jaeger, J., Finney, B., Wiest, J., 2011. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223.CrossRefGoogle Scholar
Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. In: Ehlers, J., Gibbard, P.L. (Eds.), Developments in Quaternary Sciences. Elsevier, pp. 373424.Google Scholar
Eyles, N., Moreno, L.A., Sookhan, S., 2018. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America. Quaternary Science Reviews 179, 87122.CrossRefGoogle Scholar
Fedje, D.W., Mathewes, R.W., (Ed.s) 2005. Haida Gwaii: Human History and Environment from the Time of Loon to the Time of the Iron People. University of British Columbia Press, Vancouver.Google Scholar
Fisher, D., Osterberg, E., Dyke, A., Dahl-Jensen, D., Demuth, M., Zdanowicz, C., Bourgeois, J., Koerner, R.M., Mayewski, P., Wake, C., 2008. The Mt Logan Holocene—late Wisconsinan isotope record: tropical Pacific—Yukon connections. The Holocene 18, 667677.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., 1997. Oxygen 18/16 variability in Greenland snow and ice with 10(–3)- to 10(5)-year time resolution. Journal of Geophysical Research 102, 2645526470.CrossRefGoogle Scholar
Heaton, T.H., Grady, F., 2003. The late Wisconsin vertebrate history of Prince of Wales Island, Southeast Alaska. In: Schubert, B.W., Mead, J.L., Graham, R.W. (Ed.s), Ice Age Cave Faunas of North America. Indiana University Press, Bloomington, IN, pp.1753.Google Scholar
Hendy, I., Cosma, T., 2008. Vulnerability of the Cordilleran Ice Sheet to iceberg calving during late Quaternary rapid climate change events. Paleoceanography 23, PA2101.CrossRefGoogle Scholar
Herzer, R.H., Bornhold, B.D., 1982. Glaciation and post-glacial history of the continental shelf off southwestern Vancouver Island, British Columbia. Marine Geology 48, 285319.CrossRefGoogle Scholar
Hetherington, R., Barrie, J.V., Reid, R.G.B., MacLeod, R., Smith, D.J., James, T.S., Kung, R., 2003. Late Pleistocene coastal paleogeography of the Queen Charlotte Islands, British Columbia, Canada, and its implications for terrestrial biogeography and early postglacial human occupation. Canadian Journal of Earth Sciences 40, 17551766.CrossRefGoogle Scholar
Ives, P.C., Levin, B., Oman, C.L., Rubin, M., 1967. US Geological Survey radiocarbon dates IX. Radiocarbon 9, 505529.CrossRefGoogle Scholar
Jones, R., Whitehouse, P., Bentley, M., Small, D., Dalton, A., 2019. Impact of glacial isostatic adjustment on cosmogenic surface-exposure dating. Quaternary Science Reviews 212, 206212.CrossRefGoogle Scholar
Josenhans, H., Fedje, D., Pienitz, R., Southon, J., 1997. Early humans and rapidly changing Holocene sea levels in the Queen Charlotte Islands-Hecate Strait, British Columbia, Canada. Science 277, 7174.CrossRefGoogle Scholar
Joughin, I., Alley, R.B., Holland, D.M., 2012. Ice-sheet response to oceanic forcing. Science 338, 11721176.CrossRefGoogle ScholarPubMed
Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in–situ -produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35833587.CrossRefGoogle Scholar
Lacourse, T., Mathewes, R., 2005. Terrestrial paleoecology of Haida Gwaii and the continental shelf: vegetation, climate, and plant resources of the coastal migration route. In: Fedje, D.W., Mathewes, R.W. (Ed.s), Haida Gwaii: Human History and Environment from the Time of Loon to the Time of the Iron People, University of British Columbia Press, pp. 3858.Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.CrossRefGoogle Scholar
Lesnek, A.J., Briner, J.P., Lindqvist, C., Baichtal, J.F., Heaton, T.H., 2018. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Science Advances 4, eaar5040.CrossRefGoogle ScholarPubMed
Maier, E., Zhang, X., Abelmann, A., Gersonde, R., Mulitza, S., Werner, M., Méheust, M., Ren, J., Chapligin, B., Meyer, H., 2018. North Pacific freshwater events linked to changes in glacial ocean circulation. Nature 559, 241.CrossRefGoogle ScholarPubMed
Mann, D.H., 1986. Wisconsin and Holocene glaciation of southeast Alaska. In: Hamilton, T.D., Reed, K.M., Thornson, R.M. (Ed.s), Glaciation in Alaska: The Geologic Record. Alaska Geographical Society, Anchorage, pp. 237261.Google Scholar
Mann, D.H., Hamilton, T.D., 1995. Late Pleistocene and Holocene paleoenvironments of the North Pacific coast. Quaternary Science Reviews 14, 449471.CrossRefGoogle Scholar
Mann, D.H., Peteet, D.M., 1994. Extent and Timing of the Last Glacial Maximum in Southwestern Alaska. Quaternary Research 42, 136148.CrossRefGoogle Scholar
Margold, M., Jansson, K.N., Kleman, J., Stroeven, A.P., Clague, J.J., 2013. Retreat pattern of the Cordilleran Ice Sheet in central British Columbia at the end of the last glaciation reconstructed from glacial meltwater landforms. Boreas 42, 830847.Google Scholar
Margold, M., Stroeven, A.P., Clague, J.J., Heyman, J., 2014. Timing of terminal Pleistocene deglaciation at high elevations in southern and central British Columbia constrained by Be–10 exposure dating. Quaternary Science Reviews 99, 193202.CrossRefGoogle Scholar
Mathewes, R.W., Clague, J.J., 2017. Paleoecology and ice limits of the early Fraser glaciation (Marine Isotope Stage 2) on Haida Gwaii, British Columbia, Canada. Quaternary Research 88, 277292.CrossRefGoogle Scholar
Menounos, B., Goehring, B.M., Osborn, G., Margold, M., Ward, B., Bond, J., Clarke, G.K., Clague, J.J., Lakeman, T., Koch, J., 2017. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene termination. Science 358, 781784.CrossRefGoogle ScholarPubMed
Misarti, N., Finney, B.P., Jordan, J.W., Maschner, H.D.G., Addison, J.A., Shapley, M.D., Krumhardt, A., Beget, J.E., 2012. Early retreat of the Alaska Peninsula Glacier Complex and the implications for coastal migrations of First Americans. Quaternary Science Reviews 48, 16.CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.CrossRefGoogle Scholar
NSIDC, G.a., 2005, updated 2018. Global Land Ice Measurements from Space glacier database., in: Center, T.i.G.c.a.t.N.S.a.I.D. (Ed.), Boulder, CO.Google Scholar
Praetorius, S., Mix, A., Jensen, B., Froese, D., Milne, G., Wolhowe, M., Addison, J., Prahl, F., 2016. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth and Planetary Science Letters 452, 7989.CrossRefGoogle Scholar
Praetorius, S., Mix, A., Walczak, M., Wolhowe, M., Addison, J., Prahl, F., 2015. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362366.CrossRefGoogle ScholarPubMed
Praetorius, S.K., Mix, A.C., 2014. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444448.CrossRefGoogle ScholarPubMed
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E., 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49.CrossRefGoogle ScholarPubMed
Shugar, D.H., Walker, I.J., Lian, O.B., Eamer, J.B.R., Neudorf, C., McLaren, D., Fedje, D., 2014. Post-glacial sea-level change along the Pacific coast of North America. Quaternary Science Reviews 97, 170192.CrossRefGoogle Scholar
Spratt, R.M., Lisiecki, L.E., 2016. A Late Pleistocene sea level stack. Climate of the Past 12, 10791092.CrossRefGoogle Scholar
Staiger, J., Gosse, J., Toracinta, R., Oglesby, B., Fastook, J., Johnson, J.V., 2007. Atmospheric scaling of cosmogenic nuclide production: climate effect. Journal of Geophysical Research: Solid Earth 112, B02205.CrossRefGoogle Scholar
Taylor, M.A., Hendy, I.L., Pak, D.K., 2014. Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean. Earth and Planetary Science Letters 403, 8998.CrossRefGoogle Scholar
Viens, R.J., 2001. Late Holocene climate change and calving glacier fluctuations along the southwestern margin of the Stikine Icefield, Alaska. PhD dissertation, University of Washington, Seattle.Google Scholar
Walker, M., Johnsen, S., Rasmussen, S.O., Popp, T., Steffensen, J.P., Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Björck, S., 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24, 317.CrossRefGoogle Scholar
Warner, B.G., Mathewes, R.W., Clague, J.J., 1982. Ice-free conditions on the Queen-Charlotte Islands, British Columbia, at the height of the Late Wisconsin Glaciation. Science 218, 675677.CrossRefGoogle ScholarPubMed
Weingartner, T.J., Danielson, S.L., Royer, T.C., 2005. Freshwater variability and predictability in the Alaska Coastal Current. Deep Sea Research Part II: Topical Studies in Oceanography 52, 169191.CrossRefGoogle Scholar
Wilcox, P.S., Dorale, J.A., Baichtal, J.F., Spötl, C., Fowell, S.J., Edwards, R.L., Kovarik, J.L., 2019. Millennial-scale glacial climate variability in Southeastern Alaska follows Dansgaard-Oeschger cyclicity. Scientific Reports 9, 7880.CrossRefGoogle ScholarPubMed
Wilson, F.H., Hults, C.P., Mull, C.G., Karl, S.M., 2015. Geologic map of Alaska. US Department of the Interior, US Geological Survey.CrossRefGoogle Scholar
Yehle, L.A., 1978. Reconnaissance engineering geology of the Petersburg area, southeastern Alaska, with emphasis on geologic hazards. US Geological Survey. Open-File Report 78–675.CrossRefGoogle Scholar
Young, N.E., Schaefer, J.M., Briner, J.P., Goehring, B.M., 2013. A 10Be production-rate calibration for the Arctic. Journal of Quaternary Science 28, 515526.CrossRefGoogle Scholar
Supplementary material: File

Lesnek et al. supplementary material

Lesnek et al. supplementary material

Download Lesnek et al. supplementary material(File)
File 244.3 KB