Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T20:10:02.841Z Has data issue: false hasContentIssue false

New age controls on the tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile

Published online by Cambridge University Press:  05 September 2018

DJ Weller*
Affiliation:
Department of Geological Sciences, University of Colorado, Boulder, Colorado80309-0399, USA
ME de Porras
Affiliation:
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET, CCT Mendoza, Av. Ruiz Leal s/n, Mendoza, Argentina
A Maldonado
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena, Chile Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
C Méndez
Affiliation:
Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16, Coyhaique, Chile
CR Stern
Affiliation:
Department of Geological Sciences, University of Colorado, Boulder, Colorado80309-0399, USA
*
*Corresponding author at: Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA. E-mail address: [email protected] (D.J. Weller).

Abstract

The chronology of over 50 tephra layers preserved in a lake sediment core from Laguna La Trapananda (LLT) in the southern portion of the Andean Southern Volcanic Zone (SSVZ), Chile, is constrained by new radiocarbon age determinations, which span the period from late Pleistocene glacial retreat to the late Holocene. The tephra are correlative with tephra previously described from other lake cores in the region and are attributed to explosive eruptions of the SSVZ volcanoes Mentolat, Hudson, Macá, and potentially Cay. The new age determinations are used to estimate the ages of the >50 tephra in the LLT core, as well as those from the other previously described lake cores in the area, by a Bayesian statistical method. The results constrain the frequency of explosive eruptions of the volcanic centers in the southernmost SSVZ. They indicate that there was essentially no increase in the rate of eruptions from late-glacial to recent times due to deglaciation. They also provide isochrones used to constrain the depositional histories of the small lacustrine systems within which they were deposited and they provide a tephrochronologic tool for other paleoclimatic, paleoecologic, archaeologic and tephrochronologic studies in central Patagonia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alloway, B.V., Moreno, P.I., Pearce, N.J.G., De Pol-Holz, R., Henríquez, W.I., Pesce, O.H., Sagredo, E., Villarosa, G., Outes, V., 2017a. Stratigraphy, age and correlation of Lepué Tephra: a widespread c. 11 000 cal a BP marker horizon sourced from the Chaitén Sector of southern Chile. Journal of Quaternary Science. 32, 795829. https://doi.org/10.1002/jqs.2976 Google Scholar
Alloway, B.V., Pearce, N.J.G., Moreno, P.I., Villarosa, G., Jara, I., De Pol-Holz, R., Outes, V., 2017b. An 18,000 year-long eruptive record from Volcán Chaitén, northwestern Patagonia: Paleoenvironmental and hazard-assessment implications. Quaternary Science Reviews. 168, 151181. https://doi.org/10.1016/j.quascirev.2017.05.011 Google Scholar
Bendle, J.M., Palmer, A.P., Thorndycraft, V.R., Matthews, I.P., 2017. High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modelling. Quat. Sci. Rev. 177, 314339. https://doi.org/10.1016/j.quascirev.2017.10.013 Google Scholar
Bertrand, S., Castiaux, J., Juvigné, E., 2008. Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40°S). Quaternary Research. 70, 343357. https://doi.org/10.1016/j.yqres.2008.06.001 Google Scholar
Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science Reviews. 27, 4260. https://doi.org/10.1016/j.quascirev.2007.01.019 Google Scholar
Carel, M., Siani, G., Delpech, G., 2011. Tephrostratigraphy of a deep-sea sediment sequence off the south Chilean margin: New insight into the Hudson volcanic activity since the last glacial period. Journal of Volcanology and Geothermal Research. 208, 99111. https://doi.org/10.1016/j.jvolgeores.2011.09.011 Google Scholar
D’Orazio, M., Innocenti, F., Manetti, P., Tamponi, M., Tonarini, S., González-Ferrán, O., Lahsen, A., Omarini, R., 2003. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: Geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (∼45°S, Chile). Journal of South American Earth Sciences. 16, 219242. https://doi.org/10.1016/S0895-9811(03)00063-4 Google Scholar
Daga, R., Guevara, S.R., Arribére, M., 2016. Journal of South American Earth Sciences New records of late Holocene tephras from Lake Futalaufquen (42.8°S), northern Patagonia. Journal of South Amerian Earth Sceince 66, 232247. https://doi.org/10.1016/j.jsames.2015.12.003 Google Scholar
de Porras, M.E., Maldonado, A., Abarzúa, A.M., Cárdenas, M.L., Francois, J.P., Martel-Cea, A., Stern, C.R., Méndez, C., Reyes, O., 2012. Postglacial vegetation, fire and climate dynamics at Central Chilean Patagonia (Lake Shaman, 44°S). Quaternary Science Reviews. 50, 7185. https://doi.org/10.1016/j.quascirev.2012.06.015 Google Scholar
de Porras, M.E., Maldonado, A., Quintana, F.A., Martel-Cea, A., Reyes, O., Méndez, C., 2014. Environmental and climatic changes in central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44° S). Climate of the Past 10, 10631078. https://doi.org/10.5194/cp-10-1063-2014 Google Scholar
Elbert, J., Wartenburger, R., von Gunten, L., Urrutia, R., Fischer, D., Fujak, M., Hamann, Y., Greber, N.D., Grosjean, M., 2013. Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia, Chile (45°30′S). Palaeogeography, Palaeoclimatology, Palaeoecology. 369, 482492. https://doi.org/10.1016/j.palaeo.2012.11.013 Google Scholar
Fontijn, K., Lachowycz, S.M., Rawson, H., Pyle, D.M., Mather, T.A., Naranjo, J.A., Moreno-Roa, H., 2014. Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews. 89, 7084. https://doi.org/10.1016/j.quascirev.2014.02.007 Google Scholar
Fontijn, K., Rawson, H., Van Daele, M., Moernaut, J., Abarzúa, A.M., Heirman, K., Bertrand, S., Pyle, D.M., Mather, T.A., De Batist, M., Naranjo, J.A., Moreno, H., 2016. Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District. Quaternary Science Reviews. 137, 234254. https://doi.org/10.1016/j.quascirev.2016.02.015 Google Scholar
Futa, K., Stern, C.R., 1988. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes. Earth and Planetary Science Letters. 88, 253262. https://doi.org/10.1016/0012-821X(88)90082-9 Google Scholar
Gutiérrez, F., Gioncada, A., González Ferran, O., Lahsen, A., Mazzuoli, R., 2005. The Hudson Volcano and surrounding monogenetic centres ( Chilean Patagonia): An example of volcanism associated with ridge – trench collision environment. Journal of Volcanology and Geothermal Research. 145, 207233. https://doi.org/10.1016/j.jvolgeores.2005.01.014 Google Scholar
Haberle, S.G., Lumley, S.H., 1998. Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S. Journal of Volcanology and Geothermal Research. 84, 239256. https://doi.org/10.1016/S0377-0273(98)00037-7 Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M., Zimmerman, S.R.H., 2013. SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 18891903. https://doi.org/10.2458/azu_js_rc.55.16783 Google Scholar
Kratzmann, D.J., Carey, S., Scasso, R., Naranjo, J.-A., 2009. Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bulletin of Volcanology. 71, 419439. https://doi.org/10.1007/s00445-008-0234-x Google Scholar
Kratzmann, D.J., Carey, S., Scasso, R.A., Naranjo, J.A., 2010. Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile Contributions to Mineralogy and Petrology 159 237264. https://doi.org/10.1007/s00410-009-0426-1 Google Scholar
López-Escobar, L., Cembrano, J., Moreno, H., 1995a. Geochemistry and tectonics of the Chilean southern Andes basaltic Quaternary volcanism (37-46°S). Revista Geológica de Chile 22, 219234. 10.5027/andgeoV22n2-a06 Google Scholar
López-Escobar, L., Kilian, R., Kempton, P.D., Tariri, M., 1993. Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41°30’and 46°00’S, Chile. Revista Geológica de Chile 20, 3355.Google Scholar
López-Escobar, L., Parada, M.Á., Hickey-Vargas, R., Frey, F.A., Kempton, P.D., Moreno, H., 1995b. Calbuco Volcano and minor eruptive centers distributed along the Liquiñe-Ofqui Fault Zone, Chile (41o-42o S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contributions to Mineralogy and Petrology. 119, 345361. https://doi.org/10.1007/BF00286934 Google Scholar
Lowe, D.J., 2011. Tephrochronology and its application: A review. Quaternary Geochronology. 6, 107153. https://doi.org/10.1016/j.quageo.2010.08.003 Google Scholar
Markgraf, V., Whitlock, C., Haberle, S., 2007. Vegetation and fire history during the last 18,000 cal yr B.P. in Southern Patagonia: Mallín Pollux, Coyhaique, Province Aisén (45°41′30″ S, 71°50′30″ W, 640 m elevation). Palaeogeography, Palaeoclimatology, Palaeoecology. 254, 492507. https://doi.org/10.1016/j.palaeo.2007.07.008 Google Scholar
McCulloch, R.D., Figuerero Torres, M.J., Mengoni Goñalons, G.L., Barclay, R., Mansilla, C., 2017. A Holocene record of environmental change from Río Zeballos, central Patagonia. The Holocene 27, 941950. https://doi.org/10.1177/0959683616678460 Google Scholar
Miranda, C.G., Vilanova, I., Moreno, P.I., Villa-Martínez, R., 2013. Glacial fluctuations in the Coyhaique-Balmaceda sector of central Patagonia (45°S-46°S) during the last glacial termination. Bollettino di Geofisica Teorica e Applicata. 54, 268271.Google Scholar
Moreno, P.I., Francois, J.P., Moy, C.M., Villa-Martínez, R., 2010. Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 38, 727730. https://doi.org/10.1130/G30962.1 Google Scholar
Naranjo, J.A., Stern, C.R., 1998. Holocene explosive activity of Hudson Volcano, southern Andes. Bulletin of Volcanology. 59, 291306. https://doi.org/10.1007/s004450050193 Google Scholar
Naranjo, J.A., Stern, C.R., 2004. Holocene tephrochronology of the southernmost part (42°30’ - 45°S) of the Andean Southern Volcanic Zone. Revista Geológica de Chile 31, 225240. https://doi.org/10.4067/S0716-02082004000200003 Google Scholar
Rawson, H., Naranjo, J.A., Smith, V.C., Fontijn, K., Pyle, D.M., Mather, T.A., Moreno, H., 2015. The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. Journal of Volcanology and Geothermal Research. 299, 103129. https://doi.org/10.1016/j.jvolgeores.2015.04.003 Google Scholar
Rawson, H., Pyle, D.M., Mather, T.A., Smith, V.C., Fontijn, K., Lachowycz, S.M., Naranjo, J.A., 2016. The magmatic and eruptive response of arc volcanoes to deglaciation: Insights from southern Chile. Geology 44, 251254. https://doi.org/10.1130/G37504.1 Google Scholar
Rodríguez, C., Sellés, D., Dungan, M., Langmuir, C., Leeman, W., 2007. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S; Andean Southern Volcanic Zone, Central Chile). Journal of Petrology. 48, 20332061. https://doi.org/10.1093/petrology/egm049 Google Scholar
Saadat, S., Stern, C.R., 2011. Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran. Lithos. 125, 607619. https://doi.org/10.1016/j.lithos.2011.03.014 Google Scholar
Sellés, D., Rodriguez, C.A., Dungan, M.A., 2004. Geochemistry of Nevado de Longavi Volcano (36.2S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Andean Geology. 31, 293315. https://doi.org/10.4090/juee.2008.v2n2.033040 Google Scholar
Stern, C., de Porras, M.E., Maldonado, A., 2015. Tephrochronology of the upper Río Cisnes valley (44°S), southern Chile. Andean Geology. 42, 173189. https://doi.org/10.5027/andgeoV42n2-a02 Google Scholar
Stern, C., Moreno, P.I., Henríquez, W.I., Villa-Martínez, R., Sagredo, E., Aravena, J.C., De Pol-Holz, R., 2016. Holocene tephrochronology around Cochrane (~47° S), southern Chile. Andean Geology. 43, 119. https://doi.org/10.5027/andgeoV43n1-a01 Google Scholar
Stern, C.R., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31, 151. https://doi.org/10.4067/S0716-02082004000200001 Google Scholar
Stuiver, M., Reimer, P.J., Braziunas, T.F., 1998. High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples. Radiocarbon 40, 11271151. https://doi.org/10.2458/azu_js_rc.v40i3.3786 Google Scholar
Van Daele, M., Bertrand, S., Meyer, I., Moernaut, J., Vandoorne, W., Siani, G., Tanghe, N., Ghazoui, Z., Pino, M., Urrutia, R., De Batist, M., 2016. Late Quaternary evolution of Lago Castor (Chile, 45.6°S): Timing of the deglaciation in northern Patagonia and evolution of the southern westerlies during the last 17 kyr. Quaternary Science Reviews. 133, 130146. https://doi.org/10.1016/j.quascirev.2015.12.021 Google Scholar
Vargas, G., Rebolledo, S., Sepúlveda, S.A., Lahsen, A., Thiele, R., Townley, B., Padilla, C., Rauld, R., Herrera, M.J., Lara, M., 2013. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geology. 40. https://doi.org/10.5027/andgeoV40n1-a07 Google Scholar
Völker, D., Kutterolf, S., Wehrmann, H., 2011. Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. Journal of Volcanology and Geothermal Research 205, 114129. https://doi.org/10.1016/j.jvolgeores.2011.03.011 Google Scholar
Watt, S.F.L., Pyle, D.M., Mather, T.A., 2013. The volcanic response to deglaciation: Evidence from glaciated arcs and a reassessment of global eruption records. Earth-Science Reviews. 122, 77102. https://doi.org/10.1016/j.earscirev.2013.03.007 Google Scholar
Watt, S.F.L., Pyle, D.M., Mather, T.A., 2011a. Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile. Andean Geology. 38, 335348. https://doi.org/10.5027/andgeoV38n2-a05 Google Scholar
Watt, S.F.L., Pyle, D.M., Naranjo, J.A., Rosqvist, G., Mella, M., Mather, T.A., Moreno, H., 2011b. Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ∼42° S), southern Chile. Quaternary International 246, 324343. https://doi.org/10.1016/j.quaint.2011.05.029 Google Scholar
Weller, D.J., de Porras, M.E., Maldonado, A., Mendez, C., Stern, C.R., 2017. Holocene tephrochronology of the lower Río Cisnes valley, southern Chile. Andean Geology. 44, 229248. https://doi.org/10.5027/andgeoV44n3-a01 Google Scholar
Weller, D.J., Miranda, C.G., Moreno, P.I., Villa-Martínez, R., Stern, C.R., 2015. Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile. Bulletin of Volcanology 77, 124. https://doi.org/10.1007/s00445-015-0991-2 Google Scholar
Weller, D.J., Miranda, C.G., Moreno, P.I., Villa-Martínez, R., Stern, C.R., 2014. The large late-glacial Ho eruption of the Hudson volcano, southern Chile. Bulletin of Volcanology 76, 118. https://doi.org/10.1007/s00445-014-0831-9 Google Scholar
Wright, H.E., 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Research 37, 975976. https://doi.org/10.1306/74D71807-2B21-11D7-8648000102C1865D Google Scholar
Supplementary material: Image

Weller et al. supplementary material 1

Download Weller et al. supplementary material 1(Image)
Image 19.4 MB
Supplementary material: Image

Weller et al. supplementary material 2

Download Weller et al. supplementary material 2(Image)
Image 23.5 MB
Supplementary material: Image

Weller et al. supplementary material 3

Download Weller et al. supplementary material 3(Image)
Image 16.9 MB
Supplementary material: Image

Weller et al. supplementary material 4

Download Weller et al. supplementary material 4(Image)
Image 16.4 MB
Supplementary material: Image

Weller et al. supplementary material 5

Download Weller et al. supplementary material 5(Image)
Image 19.6 MB
Supplementary material: Image

Weller et al. supplementary material 6

Download Weller et al. supplementary material 6(Image)
Image 21.5 MB
Supplementary material: Image

Weller et al. supplementary material 7

Download Weller et al. supplementary material 7(Image)
Image 23.1 MB
Supplementary material: Image

Weller et al. supplementary material 8

Download Weller et al. supplementary material 8(Image)
Image 17.6 MB
Supplementary material: File

Weller et al. supplementary material 9

Download Weller et al. supplementary material 9(File)
File 18.4 KB
Supplementary material: File

Weller et al. supplementary material 10

Download Weller et al. supplementary material 10(File)
File 16.3 KB
Supplementary material: File

Weller et al. supplementary material 11

Download Weller et al. supplementary material 11(File)
File 9.4 KB
Supplementary material: File

Weller et al. supplementary material 12

Download Weller et al. supplementary material 12(File)
File 78.9 KB