Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T16:45:11.017Z Has data issue: false hasContentIssue false

Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China

Published online by Cambridge University Press:  20 January 2017

Wei Huang
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Yongjin Wang*
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Hai Cheng
Affiliation:
Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China Department of Geology and Geophysics, University of Minnesota, MN 55455, USA
Richard Lawrence Edwards
Affiliation:
Department of Geology and Geophysics, University of Minnesota, MN 55455, USA
Chuan-Chou Shen
Affiliation:
Department of Geosciences, National Taiwan University, Taipei 106, Taiwan, ROC
Dianbing Liu
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Qingfeng Shao
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Chao Deng
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Zhenqiu Zhang
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Quan Wang
Affiliation:
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
*
* Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, No. 1 Wenyuan Road, Qixia District, Nanjing 210023, China. [email protected] (W. Huang). [email protected] (Y. Wang).

Abstract

We present two isotopic (δ18O and δ13C) sequences of a twin-stalagmite from Zhuliuping Cave, southwestern China, with 230Th dates from 14.6 to 4.6 ka. The stalagmite δ18O record characterizes orbital- to decadal-scale variability of Asian summer monsoon (ASM) intensity, with the Holocene optimum period (HOP) between 9.8 and 6.8 ka BP which is reinforced by its co-varying δ13C data. The large multi-decadal scale amplitude of the cave δ18O indicates its high sensitivity to climate change. Four centennial-scale weak ASM events during the early Holocene are centered at 11.2, 10.8, 9.1 and 8.2 ka. They can be correlated to cold periods in the northern high latitudes, possibly resulting from rapid dynamics of atmospheric circulation associated with North Atlantic cooling. The 8.2 ka event has an amplitude more than two-thirds that of the Younger Dryas (YD), and is significantly stronger than other cave records in the Asia monsoon region, likely indicating a more severe dry climate condition at the cave site. At the end of the YD event, the δ13C record lags the δ18O record by 300–500 yr, suggesting a multi-centennial slow response of vegetation and soil processes to monsoon enhancement.

Type
Research Article
Copyright
Copyright © American Quaternary Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Agustsdottir, A.M., 2005. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 1123-1149.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.Google Scholar
An, Z., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., Zhou, W., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.Google Scholar
Baldini, J.U.L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., Railsback, L.B., 2005. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England. Earth and Planetary Science Letters 240, 486494.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., Gagnon, J.M., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.Google Scholar
Bemis, B.E., Spero, H.J., Bijma, J., Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, 150160.Google Scholar
Beniston, M., Diaz, H.F., Bradley, R.S., 1997. Climatic change at high elevation sites: an overview. Climatic Change 36, 233251.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Bos, J.A.A., van Geel, B., van der Plicht, J., Bohncke, S.J.P., 2007. Preboreal climate oscillations in Europe: wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records. Quaternary Science Reviews 26, 19271950.Google Scholar
Branch, N.P., Marini, N.A.F., 2014. Mid-Late Holocene environmental change and human activities in the northern Apennines, Italy. Quaternary International 353, 3451.Google Scholar
Broecker, W.S., 1994. Massive iceberg discharges as triggers for global climate change. Nature 372, 421424.Google Scholar
Broecker, W.S., Peteet, D.M., Rind, D.,1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 2126.Google Scholar
Cai, B.G., Edwards, R.L., Cheng, H., Tan, M., Wang, X., Liu, T.S., 2008. A dry episode during the Younger Dryas and centennial-scale weak monsoon events during the early Holocene: a high-resolution stalagmite record from southeast of the Loess Plateau, China. Geophysical Research Letters 35. L02705.Google Scholar
Cai, Y., Tan, L., Cheng, H., An, Z., Edwards, R.L., Kelly, M.J., Kong, X., Wang, X., 2010. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth and Planetary Science Letters 291, 2131.Google Scholar
Cai, Y.J., Zhang, H.W., Cheng, H., An, Z.S., Edwards, R.L., Wang, X.F., Tan, L.C., Liang, F.Y., Wang, J., Kelly, M., 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth and Planetary Science Letters 335, 135144.Google Scholar
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato, T., John, B., Birks, H., Boomer, I., Chen, J., An, C., Wünnemann, B., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectroscopy. Earth and Planetary Science Letters 371–372, 8291.Google Scholar
Cheng, H., Fleitmann, D., Edwards, R.L., Wang, X., Cruz, F.W., Auler, A.S., Mangini, A., Wang, Y., Kong, X., Burns, S.J., Matter, A., 2009. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37, 10071010.Google Scholar
Cheng, H., Sinha, A., Wang, X., Cruz, F., Edwards, R.L., 2012. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39, 10451062.Google Scholar
Cosford, J., Qing, H.R., Mattey, D., Eglington, B., Zhang, M.L., 2009. Climatic and local effects on stalagmite delta C-13 values at Lianhua Cave, China. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 235244.Google Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Ferrari, J.A., 2006. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews 25, 27492761.Google Scholar
Cruz, F.W., Karmann, I., Viana, O., Burns, S.J., Ferrari, J.A., Vuille, M., Sial, A.N., Moreira, M.Z., 2005. Stable isotope study of cave percolation waters in subtropical Brazil: implications for paleoclimate inferences from speleothems. Chemical Geology 220, 245262.Google Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.Google Scholar
Dayem, K.E., Molnar, P., Battisti, D.S., Roe, G.H., 2010. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth and Planetary Science Letters 295, 219230.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., 2000. Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347361.Google Scholar
Dong, B.W., Sutton, R.T., 2002. Adjustment of the coupled ocean-atmosphere system to a sudden change in the thermohaline circulation. Geophysical Research Letters 29. L01728.Google Scholar
Dong, J., Wang, Y., Cheng, H., Hardt, B., Edwards, R.L., Kong, X., Wu, J., Chen, S., Liu, D., Jiang, X., Zhao, K., 2010. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. The Holocene 20, 257264.Google Scholar
Dorale, J.A., Edwards, R.L., Ito, E., González, L.A., 1998. Climate and vegetation history of the Midcontinent from 75 to 25 ka: a speleothem record from Crevice cave, Missouri, USA. Science 282, 18711874.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermottF., E.I.M.F F., E.I.M.F, 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.Google Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the indian monsoon recorded in a stalagmite from southern Oman. Science 300, 17371739.Google Scholar
Fleitmann, D., Mudelsee, M., Burns, S.J., Bradley, R.S., Kramers, J., Matter, A., 2008. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23, 11021107.Google Scholar
Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., 2000. Calcite fabrics, growth mechanisms, and environment of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research 70, 11831196.Google Scholar
Genty, D., Massault, M., 1999. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW-France: modelling and comparison with other stalagmite. Geochimica et Cosmochimica Acta 63, 15371548.Google Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., PonsBranchu, E., Hamelin, B., 2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65, 34433457.Google Scholar
Genty, D., 2008. Palaeoclimate research in Villars cave (Dordogne SW-France). International Journal of Speleology 37, 173191.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Genty, D., Combourieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K., Mansuri, F., Ghaleb, B., Isabello, L., Dormoy, I., von Grafenstein, U., 2010. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quaternary Science Reviews 29, 27992820.Google Scholar
Genty, D., Quinif, Y., 1996. Annually laminated sequences in the internal structure of some Belgian stalagmites--importance for paleoclimatology. Journal of Sedimentary Research 66, 275288.Google Scholar
Hald, M., Hagen, S., 1998. Early Preboreal cooling in the Nordic seas region triggered by meltwater. Geology 26, 615618.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.Google Scholar
He, Y., Theakstone, W.H., Zhang, Z.L., Zhang, D.A., Yao, T.D., Chen, T., Shen, Y.P., Pang, H.X., 2004. Asynchronous Holocene climatic change across China. Quaternary Research 61, 5263.Google Scholar
Hellstrom, J., McCulloch, M., Stone, J., 1998. A detailed 31,000-year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems. Quaternary Research 50, 167178.Google Scholar
Hu, C., Henderson, G.M., Huang, J., Xie, S., Sun, Y., Johnson, K.R., 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters 266, 221232.Google Scholar
Jiang, X., He, Y., Shen, C., Kong, X., Li, Z., Chang, Y., 2012. Stalagmite-inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the climatic optimum in the Asian monsoon territory. Chinese Science Bulletin 57, 795801.Google Scholar
Kelly, M.J., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., An, Z., 2006. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeography, Palaeoclimatology, Palaeoecology 236, 2038.Google Scholar
Kienast, M., Steinke, S., Stattegger, K., Calvert, S.E., 2001. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291, 21322134.Google Scholar
Kong, X.G., Wang, Y.J., Wu, J.Y., Cheng, H., Edwards, R.L., Wang, X.F., 2005. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China. Science in China Series D-Earth Sciences 48, 21742181.Google Scholar
Li, T., Liu, Z., Hall, M.A., Berne, S., Saito, Y., Cang, S., Cheng, Z., 2001. Heinrich event imprints in the Okinawa trough: evidence from oxygen isotope and planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 133146.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A PlioceneePleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography 20. PA1003.Google Scholar
Liu, D., Wang, Y., Cheng, H., Edwards, R.L., 2012. High-resolution stalagmite δ13C record of soil processes from southwestern China during the early MIS 3. Chinese Science Bulletin 58, 796802.Google Scholar
Liu, J.B., Chen, J.H., Zhang, X.J., Li, Y., Rao, Z.G., Chen, F.H., 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records. Earth-Science Reviews 148, 194208.Google Scholar
Liu, Y.H., Henderson, G.M., Hu, C.Y., Mason, A.J., Charnley, N., Johnson, K.R., Xie, S.C., 2013. Links between the East Asian monsoon and north Atlantic climate during the 8,200 year event. Nature Geoscience 6, 117120.Google Scholar
Liu, Z.Y., Wen, X.Y., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H.Y., Cheng, H., Wang, Y.J., Zheng, W.P., Ding, Y.H., Edwards, R.L., Cheng, J., Liu, W., Yang, H., 2014. Chinese cave records and the East Asia summer monsoon. Quaternary Science Reviews 83, 115128.Google Scholar
Liu, D., Wang, Y., Cheng, H., Edwards, R.L., 2012. High-resolution stalagmite δ 13C record of soil processes from southwestern China during the early MIS 3. Chinese Science Bulletin 58, 796802.Google Scholar
Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., Frisia, S., 2008. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters 269, 8095.Google Scholar
Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlén, W., Maasch, K.A., David Meeker, L., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., 2004. Holocene climate variability. Quaternary Research 62, 243255.Google Scholar
McDermott, F., 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, 901918.Google Scholar
Mickler, P.J., Stern, L.A., Banner, J.L., 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 118, 6581.Google Scholar
Oppo, D.W., Sun, Y., 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon. Geology 33, 785788.Google Scholar
Oster, J.L., Montañez, I.P., Guilderson, T.P., Sharp, W.D., Banner, J.L., 2010. Modeling speleothem δ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr. Geochimica et Cosmochimica Acta 74, 52285242.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111.Google Scholar
Rasmussen, S.O., Vinther, B.M., Clausen, H.B., Andersen, K.K., 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, 19071914.Google Scholar
Renssen, H., Seppa, H., Heiri, O., Roche, D.M., Goosse, H., Fichefet, T., 2009. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, 410413.Google Scholar
Ryan, M.T., Dunbar, G.B., Vandergoes, M.J., Neil, H.L., Hannah, M.J., Newnham, R.M., Bostock, H., Alloway, B.V., 2012. Vegetation and climate in Southern Hemisphere mid-latitudes since 210 ka: new insights from marine and terrestrial pollen records from New Zealand. Quaternary Science Reviews 48, 8098.Google Scholar
Shao, Q., Bahain, J.J., Wang, W., Zhu, M., Voinchet, P., Lin, M., Douville, E., 2015. Coupled ESR and U-series dating of early Pleistocene Gigantopithecus faunas at Mohui and Sanhe Caves, Guangxi, southern China. Quaternary Geochronology 30, 524528.Google Scholar
Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R.L., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D.D., Kano, A., Hori, M., Spötl, C., 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta 99, 7186.Google Scholar
Spötl, C., Fairchild, I.J., Tooth, A.F., 2005. Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta 69, 24512468.Google Scholar
Stuiver, M., Braziunas, T.F., Grootes, P.M., Zielinski, G.A., 1997. Is there evidence for solar forcing of climate in the GISP2 oxygen isotope record? Quaternary Research 48, 259266.Google Scholar
Sun, Y.B., Oppo, D.W., Xiang, R., Liu, W.G., Gao, S., 2005. Last deglaciation in the Okinawa trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20. PA4005.Google Scholar
Tan, M., 2009. Circulation effect: climatic significance of the short term variability of the oxygen isotopes in stalagmites from monsoonal China-dialogue between paleoclimate records and modern climate research (in Chinese with English abstract). Quaternary Sciences 29, 851862.Google Scholar
Teller, J.T., Leverington, D.W., 2004. Glacial Lake Agassiz: a 5000 yr history of change and its relationship to the δ18O record of Greenland. Geological Society of America Bulletin 116, 729742.Google Scholar
Teller, J.T., Leverington, D.W., Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, 879887.Google Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W.C., Vaughn, B., Popp, T., 2007. The 8.2ka event from Greenland ice cores. Quaternary Science Reviews 26, 7081.Google Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.L., Steffensen, J.P., Svensson, A., Olsen, J., Heinemeier, J., 2006. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research 111.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Solheid, M., 2006. Inter-hemispheric anti-phasing of rainfall during the last glacial period. Quaternary Science Reviews 25, 33913403.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., Solheid, M., 2007. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34. L23701.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Wu, J.Y., Wang, Y.J., Cheng, H., Kong, X.G., Liu, D.B., 2012. Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”. Climate of the Past 8, 14971507.Google Scholar
Xu, D.K., Lu, H.Y., Wu, N.Q., Liu, Z.X., Li, T.G., Shen, C.M., Wang, L., 2013. Asynchronous marineeterrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes. Proceedings of the National Academy of Sciences of the United States of America 110, 96579662.Google Scholar
Yang, Y., Yuan, D., Cheng, H., Zhang, M., Qin, J., Lin, Y., Zhu, X., Edwards, R.L., 2010. Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China. Science China Earth Sciences 53, 633641.Google Scholar
Yuan, D., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J.A., An, Z., Cai, Y., 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, 575578.Google Scholar
Zhang, M.L., Yuan, D.X., Lin, Y.S., Qin, J.M., Bin, L., Cheng, H., Edwards, R.L., 2004. A 6000-year high-resolution climatic record from a stalagmite in Xiangshui Cave, Guilin, China. The Holocene 14, 697702.Google Scholar
Zhang, R., Delworth, T.L., 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18, 18531860.Google Scholar
Zhou, W.J., Song, S.H., Burr, G., Jull, A.J.T., Lu, X.F., Yu, H.G., Cheng, P., 2007. Is there a time-transgressive Holocene optimum in the East Asian monsoon area? Radiocarbon 49, 865875.Google Scholar
Zhu, X.Y., Zhang, M.L., Cheng, H., Wu, X., Edwards, R.L., 2015. Centennial-scale monsoon climate fluctuations from a stalagmite record during the mid-Holocene epoch. Environmental Earth Sciences 74, 929935.Google Scholar
Zhu, X.Y., Zhang, M.L., Lin, Y.S., Qin, J.M., Yang, Y., 2006. Carbon isotopic records from stalagmites and the signification of paleo-cological environment in the area of Guangxi-Guizhou, China. Environmental Geology 51, 267273.Google Scholar
Zhuang, Y.J., Kidder, T.R., 2014. Archaeology of the Anthropocene in the Yellow river region, China, 8000–2000 cal. BP. The Holocene 24, 16021623.Google Scholar
Zuo, J.Q., Li, W.J., Sun, C.H., Xu, L., Ren, H.L., 2013. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Advances in Atmospheric Sciences 30, 11731186.Google Scholar
Supplementary material: File

Huang et al. Supplementary Material

Supplementary Material

Download Huang et al. Supplementary Material(File)
File 46.1 KB