Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T08:02:50.891Z Has data issue: false hasContentIssue false

Multi-proxy record of postglacial environmental change, south-central Melville Island, Northwest Territories, Canada

Published online by Cambridge University Press:  20 January 2017

Matthew Peros*
Affiliation:
Laboratory for Paleoclimatology and Climatology, Department of Geography, University of Ottawa, Ottawa, ON, Canada K1N 6N5
Konrad Gajewski
Affiliation:
Laboratory for Paleoclimatology and Climatology, Department of Geography, University of Ottawa, Ottawa, ON, Canada K1N 6N5 Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
Tara Paull
Affiliation:
Laboratory for Paleoclimatology and Climatology, Department of Geography, University of Ottawa, Ottawa, ON, Canada K1N 6N5
Rebecca Ravindra
Affiliation:
Laboratory for Paleoclimatology and Climatology, Department of Geography, University of Ottawa, Ottawa, ON, Canada K1N 6N5
Brandi Podritske
Affiliation:
Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
*
*Corresponding author. E-mail address:[email protected] (M. Peros).

Abstract

A sediment core from Lake BC01 (75"10.945?N, 111"55.181?W, 225"m asl) on south-central Melville Island, NWT, Canada, provides the first continuous postglacial environmental record for the region. Fossil pollen results indicate that the postglacial landscape was dominated by Poaceae and Salix, typical of a High Arctic plant community, whereas the Arctic herb Oxyria underwent a gradual increase during the late Holocene. Pollen-based climate reconstructions suggests the presence of a cold and dry period ~12,000"cal yr BP, possibly representing the Younger Dryas, followed by warmer and wetter conditions from 11,000 to 5000"cal yr BP, likely reflective of the Holocene Thermal Maximum. The climate then underwent a gradual cooling and drying from 5000"cal yr BP to the present, suggesting a late Holocene neoglacial cooling. Diatom preservation was poor prior to 5000"cal yr BP, when conditions were warmest, suggesting that diatom dissolution may in part be climatically controlled. Diatom concentrations were highest ~4500"cal yr BP but then decreased substantially by 3500"cal yr BP and remained low before recovering slightly in the 20th century. An abrupt warming occurred during the past 70 yr at the site, although the magnitude of this warming did not exceed that of the early Holocene.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(2005). ACIA. Arctic Climate Impact Assessment. Cambridge University Press, New York. Google Scholar
Alley, R.B., (2004). GISP2 ice core temperature and accumulation data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013. NOAA/NGDC Paleoclimatology Program, Boulder, CO, USA. Google Scholar
Anderson, N.J., (2000). Diatoms, temperature and climatic change. European Journal of Phycology 33, 307314.Google Scholar
Anderson, N.J., Brodersen, K.P., Ryves, D.B., McGowan, S., Johansson, L.S., Jeppesen, E., Leng, M.J., (2008). Climate versus in-lake processes as controls on the development of community structure in a low-Arctic lake. Ecosystems 11, 307324.CrossRefGoogle Scholar
Antoniades, D., Crawley, C., Douglas, M.S.V., Pienitz, R., Andersen, D., Doran, P., Hawes, I., Pollard, W., Vincent, W., (2008). Reply to comment by K. Gajewski on "Abrupt environmental change in Canada's northernmost lake". Geophysical Research Letters 34, L08702 .Google Scholar
Antoniades, D., Crawley, C., Douglas, M.S.V., Pienitz, R., Andersen, D., Doran, P., Hawes, I., Pollard, W., Vincent, W., (2007). Abrupt environmental change in Canada's northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophysical Research Letters 34, L18708 .Google Scholar
Antoniades, D., Douglas, M.S.V., Smol, J.P., (2005). Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. Journal of Paleolimnology 33, 349360.CrossRefGoogle Scholar
Battarbee, R., (1986). Chapter 26. Diatom analysis. Berglund, B.E., Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons, Chichester, UK. Google Scholar
Bliss, L.C., Peterson, K.M., (2002). Plant succession, competition and the physiological constraints of species in the Arctic. Chapin, F.S., Jeffries, R.L., Reynolds, J.F., Shaver, G.R., Svoboda, J., Arctic Ecosystems in a Changing Climate. Academic Press, San Diego., 111136.Google Scholar
Bolch, C.J.S., (1997). The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 36, 472478.Google Scholar
Christie, R.L., McMillan, N.J., (1994). The geology of Melville Island, Arctic Canada. Geological Survey of Canada Bulletin 450.Google Scholar
Conley, D.J., Schelske, C.L., (1993). Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Canadian Journal of Fisheries and Aquatics Sciences 50, 296302.Google Scholar
Cwynar, L.C., Burden, E., McAndrews, J.C., (1979). An inexpensive method for concentrating pollen and spores from fine grained sediments. Canadian Journal of Earth Sciences 16, 11151120.CrossRefGoogle Scholar
Dyke, A.S., (2004). An outline of North American deglaciation with emphasis on central and northern Canada. Ehlers, J., Gibbard, P.L., Quaternary Glaciations"Extent and Chronology Part II. Elsevier, Amsterdam., 373424.Google Scholar
Dyke, A.S., Savelle, J.M., (2000). Holocene driftwood incursions to southwestern Victoria Island, Canadian Arctic Archipelago, and its significance to paleoceanography and archaeology. Quaternary Research 54, 113120.Google Scholar
Dyke, A.S., Savelle, J.M., (2001). Holocene history of the Bering Sea bowhead whale (Balaena mysticetus) in its Beaufort Sea Summer ground off southwestern Victoria Island, western Canadian Arctic. Quaternary Research 55, 371379.CrossRefGoogle Scholar
Dyke, A.S., England, J., Reimnitz, E., Jett", H., (1997). Changes in driftwood delivery to the Canadian Arctic Archipelago: the hypothesis of postglacial oscillations of the transpolar drift. Arctic 50, 116.Google Scholar
Dyke, A.S., Hooper, J., Savelle, J.M., (1996). A history of sea ice in the Canadian Arctic Archipelago based on postglacial remains of the bowhead whale (Balaena mysticetus). Arctic 49, 235255.Google Scholar
Edlund, S.A., (1986). Vegetation"Geology"Climate relationships of western Melville Island, District of Franklin. Current Research of the Geological Survey of Canada 86-1A, 719726.Google Scholar
Edlund, S.A., (1994). The distribution of plant communities on Melville Island, Arctic Canada. Christie, R.L., McMillan, N.J., The Geology of Melville Island, Arctic Canada. Geological Survey of Canada Bulletin 450. 247255.Google Scholar
Edlund, S.A., Alt, B.T., (1989). Regional congruence of vegetation and summer climate patterns in the Queen Elizabeth Islands, Northwest Territories, Canada. Arctic 42, 323.Google Scholar
England, J.H., Atkinson, N., Bednarski, J., Dyke, A.S., Hodgson, D.A., Cofaigh, C."., (2006). The Innuitian Ice Sheet: configuration, dynamics and chronology. Quaternary Science Reviews 25, 689703.CrossRefGoogle Scholar
England, J.H., Furze, M.F.A., Doup", J.P., (2009). Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia and Arctic Ocean sedimentation. Quaternary Science Reviews 28, 15731596.CrossRefGoogle Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4th ed.John Wiley and Sons, Chichester. Google Scholar
Finkelstein, S., Gajewski, K., (2007). A paleolimnological record of diatom community dynamics and late Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. The Holocene 16, 803812.Google Scholar
Fisher, D.A., Koerner, R.M., Reeh, N., (1995). Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. The Holocene 5, 1924.Google Scholar
Gajewski, K., (1995). Modern and Holocene pollen accumulation in some small arctic lakes from Somerset Island, N.W.T, Canada. Quaternary Research 44, 228236.CrossRefGoogle Scholar
Gajewski, K., (2002). Modern pollen assemblages in lake sediments from the Canadian Arctic. Arctic, Antarctic and Alpine Research 34, 2632.Google Scholar
Gajewski, K., (2008). Comment on "Abrupt environmental change in Canada's northernmost lake inferred from fossil diatom and pigment stratigraphy" by Dermott Antoniades et al. Geophysical Research Letters 35, L08701 .Google Scholar
Gajewski, K., Atkinson, D., (2003). Climate change in the Canadian Arctic. Environmental Reviews 11, 69102.CrossRefGoogle Scholar
Gajewski, K., Frappier, M., (2001). Postglacial environmental history from Prince of Wales Island, Nunavut, Canada. Boreas 30, 285289.Google Scholar
Gajewski, K., Garneau, M., Bourgeois, J.C., (1995). Paleoenvironments of the Canadian High Arctic derived from pollen and plant macrofossils: problems and potentials. Quaternary Science Reviews 14, 609629.CrossRefGoogle Scholar
Gajewski, K., Mott, R.J., Ritchie, J.C., Hadden, K., (2000). Holocene vegetation history of Banks Island, Northwest Territories, Canada. Canadian Journal of Botany 78, 430436.CrossRefGoogle Scholar
Greenacre, M., (2007). Correspondence Analysis in Practice. Chapman and Hall/CRC Press, Boca Raton, Fl. CrossRefGoogle Scholar
Harington, C.R., (2005). The eastern limit of Beringia: mammoth remains from Banks and Melville Islands, Northwest Territories. Arctic 58, 361369.Google Scholar
Hodgson, D.A., Vincent, J.S., Fyles, J.G., (1984). Quaternary geology of central Melville Island, Northwest Territories. Geological Survey of Canada Paper 83-16, 125.Google Scholar
Hyv"rinen, H., (1985). Holocene pollen stratigraphy of Baird Inlet, East-Central Ellesmere Island, Arctic Canada. Boreas 14, 1932.CrossRefGoogle Scholar
Juggins, S., (2006). C2: Software for ecological and paleoecological data analysis and visualization. version 1.4.3. Available from http://www.campus.ncl.ac.uk/staff/Stephen.Juggins/ (16 November 2007).Google Scholar
Kaufman, D., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsd"ttir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, J.C., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., R"hland, K., Smol, J.P., Steig, E.J., Wolfe, B.B., (2004). (PARCS Working Group). Holocene thermal maximum in the western Arctic (0" to 180"W). Quaternary Science Reviews 23, 529560.Google Scholar
Kaufman, D., Schneider, D., McKay, N., Amman, C., Bradley, R., Briffa, K., Miller, G., Otto-Bleisner, B., Overpeck, J., Vintner, B., (2009). Arctic Lakes 2k Project members. Recent warming reverses long-term Arctic cooling. Science 325, 12361239.Google Scholar
Keatley, B.E., Douglas, M.S.V., Smol, J.P., (2006). Early-20th century environmental changes inferred using subfossil diatoms from a small pond on Melville Island, N.W.T, Canadian high Arctic. Hydrobiologia 553, 1526.Google Scholar
Keatley, B.E., Douglas, M.S.V., Smol, J.P., (2008). Prolonged ice cover dampens diatom community responses to recent climatic change in High Arctic Lakes. Arctic, Antarctic and Alpine Research 40, 364372.CrossRefGoogle Scholar
Kerwin, M.W., Overpeck, J.T., Webb, R.S., Anderson, K.H., (2004). Pollen-based summer temperature reconstructions for the eastern Canadian boreal forest, subarctic and arctic. Quaternary Science Reviews 23, 19011924.Google Scholar
Leblanc, M., Gajewski, K., Hamilton, P., (2004). A diatom-based Holocene paleoenvironmental record from a lake on the Boothia Peninsula, Nunavut, Canada. The Holocene 14, 423431.Google Scholar
Michelutti, N., Douglas, M.S.V., Smol, J.P., (2003). Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Global and Planetary Change 38, 257271.Google Scholar
Michelutti, N., Wolfe, A.P., Vinebrooke, R.D., Rivard, B., Briner, J.P., (2005). Recent primary production increases in arctic lakes. Geophysical Research Letters 32, L19715 .CrossRefGoogle Scholar
Michelutti, N., Douglas, M.S.V., Wolfe, A.P., Smol, J.P., (2006). Heightened sensitivity of a poorly buffered high arctic lake to late Holocene climatic change. Quaternary Research 65, 421430.Google Scholar
Michelutti, N., Wolfe, A.P., Briner, J.P., Miller, G.H., (2007). Climatically controlled chemical and biological development in Arctic lakes. Journal of Geophysical Research 112, G03002doi: 1029/2006JG000396.Google Scholar
Miller, G.H., Wolfe, A.P., Briner, J.P., Sauer, P.E., Nesje, A., (2005). Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews 24, 17031721.Google Scholar
Overpeck, J., Webb, T., Prentice, I.C., (1985). Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogues. Quaternary Research 23, 87108.Google Scholar
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M.S.V., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., Macdonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A.P., Zielinski, G., (1997). Arctic environmental change of the last four centuries. Science 278, 12511256.CrossRefGoogle Scholar
Peros, M., Gajewski, K., (2008). Holocene climate and vegetation change on Victoria Island, western Canadian Arctic. Quaternary Science Reviews 27, 235249.CrossRefGoogle Scholar
Peros, M.C., Gajewski, K., (2009). Pollen-based reconstructions of late Holocene climate from the central Canadian Arctic. Journal of Paleolimnology 41, 161175.Google Scholar
Perren, B.B., Bradley, R.S., Francus, P., (2003). Rapid lacustrine response to recent High Arctic Warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arctic, Antarctic and Alpine Research 35, 271278.Google Scholar
Podritske, B., Gajewski, K., (2007). Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Canada. Quaternary Science Reviews 26, 31793196.Google Scholar
R Development Core Team, (2006). R: A language and environment for Statistical Computing. R Foundation for Statistical Computing . Vienna, Austria. Available from: http://www.R-project.org/ (11 January 2008).Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 26"0 ka BP. Radiocarbon 46, 10291058.Google Scholar
Ritchie, J.C., (1984). Past and Present Vegetation of the Far Northwest of Canada. University of Toronto Press, Toronto. Google Scholar
R"hland, K., Smol, J.P., (2005). Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226, 116.Google Scholar
Ryves, D.B., Battarbee, R.W., Juggins, S., Fritz, S.C., Anderson, N.J., (2006). Physical and chemical predictors of diatom dissolution in freshwater and saline sediments in North America and Greenland. Limnology and Oceanography 51, 13551368.Google Scholar
Smith, I.R., (2002). Diatom-based Holocene paleoenvironmental records from continental sites on northeastern Ellesmere Island, high Arctic, Canada. Journal of Paleolimnology 27, 928.CrossRefGoogle Scholar
Smol, J.P., Wolfe, A.P., Birks, H.H., Douglas, M.S.V., Jones, V., Korhola, A., Pienitz, R., R"hland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.A., Hughes, M.K., Keatley, B., Laing, T., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B.B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, S., Solovieva, N., Weckstr"m, J., (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Science USA 102, 43974402.Google Scholar
Stuiver, M, Reimer, P.J, Reimer, R.W., (2005). CALIB 5.0. Available from:http://calib.qub.ac.uk/calib/ (28 July 07).Google Scholar
Whitmore, J., Gajewski, K., Sawada, M., Williams, J.W., Minckley, T., Shuman, B., Bartlein, P.J., Webb III, T., Viau, A.E., Shafer, S., Anderson, P., Brubaker, L.B., (2005). A North American modern pollen database for multi-scale paleoecological and paleoclimatic applications. Quaternary Science Reviews 24, 18281848.Google Scholar
Wolfe, A.P., (1996). A high resolution late-glacial and early Holocene diatom record from Baffin Island, eastern Canadian Arctic. Canadian Journal of Earth Sciences 33, 928937.CrossRefGoogle Scholar
Wolfe, A.P., (2002). Climate modulates acidity of Arctic lakes on millennial time scales. Geology 30, 215218.Google Scholar
Wolfe, A.P., (2003). Diatom community responses to late Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene 13, 2937.Google Scholar
Wolfe, A.P., Smith, I.R., (2004). Paleolimnology of the Middle and High Canadian Arctic. Pienitz, R., Douglas, M.S.V., Smol, J.P., Long-Term Environmental Change in Arctic and Antarctic Lakes. Kluwer Academic Press, Boston., 241268.Google Scholar
Wolken, G.J., England, J.H., Dyke, A.S., (2005). Re-evaluating the relevance of vegetation trimlines in the Canadian Arctic as an indicator of Little Ice Age paleoenvironments. Arctic 58, 341354.Google Scholar
Zabenskie, S., Gajewski, K., (2007). Post-glacial climatic change on Boothia Peninsula, Nunavut, Canada. Quaternary Research 68, 261270.Google Scholar
Zabenskie, S., Peros, M., Gajewski, K., (2006). The use of heavy-liquid in the separation of pollen from Arctic lake sediments. Canadian Association of Palynologists Newsletter 29, 57.Google Scholar