Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:15:10.918Z Has data issue: false hasContentIssue false

Multiproxy paleoecological evidence of Holocene climatic changes on the Boothia Peninsula, Canadian Arctic

Published online by Cambridge University Press:  20 January 2017

Marie-Claude Fortin
Affiliation:
Ottawa-Carleton Institute of Biology, Laboratory for Paleoclimatology and Climatology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Konrad Gajewski*
Affiliation:
Ottawa-Carleton Institute of Biology, Laboratory for Paleoclimatology and Climatology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
*
Corresponding author. E-mail address:[email protected] (K. Gajewski).

Abstract

A study of chironomid remains in the sediments of Lake JR01 on the Boothia Peninsula in the Central Canadian Arctic provides a high-resolution record of mean July air temperatures for the last 6.9 ka. Diatom and pollen studies have previously been published from this core. Peak Holocene temperatures occurred prior to 5.0 ka, a time when overall aquatic and terrestrial biological production was high. Chironomid-inferred summer air temperatures reached up to 7.5°C during this period. The region of Lake JR01 cooled over the mid- to late-Holocene, with high biological production between 6.1 and 5.4 ka. Biological production decreased again at ∼2 ka and the rate of cooling increased in the past 2 ka, with coolest temperatures occurring between 0.46 and 0.36 ka, coinciding with the Little Ice Age. Although biological production increased in the last 150 yr, the reconstructed temperatures do not indicate a warming during this time. During transitions, either warming or cooling, chironomid production increases, suggesting an ecosystem-level response to climate variability, seen at a number of lakes across the Arctic.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P., Bartlein, P., Brubaker, L., Gajewski, K., Ritchie, J.C.(1989). Modern analogues of Late-Quaternary pollen spectra from the western interior of North America. Journal of Biogeography 16, 573596.Google Scholar
Axford, Y., Briner, J., Miller, G.H., Francis, D.R.(2009). Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quaternary Research 71, 142149.CrossRefGoogle Scholar
Axford, Y., Losee, S., Briner, J., Francis, D., Langdon, P., Walker, I.(2013). Holocene temperature history at the western Greenland Ice Sheet margin reconstructed from lake sediments. Quaternary Science Reviews 59, 87100.Google Scholar
Barley, E.M., Walker, I.R., Kurek, J., Cwynar, L.C., Mathewes, R.W., Gajewski, K., Finney, B.P.(2006). A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. Journal of Paleolimnology 36, 295314.Google Scholar
Birks, H.J.B. (1998). Numerical tools in paleolimnology- progress, potentialities, and problems. Journal of Paleolimnology 20, 307322.Google Scholar
Blaauw, M., Christen, J.A.(2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Briner, J.P., Michelutti, N., Francis, D.R., Miller, G.H., Axford, Y., Wooller, M.J., Wolfe, A.P.(2006). A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada. Quaternary Research 65, 431442.Google Scholar
Brooks, S.J., Langdon, P.G., Heiri, O.(2007). The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology.QRA Technical Guide No.10Quaternary Research Association, London.Google Scholar
Conley, D.J. (1998). An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry 63, 3948.Google Scholar
Conley, D.J., Schelske, C.L.(2001). Biogenic silica.Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators vol. 3, Kluwer Academic Publisher, Dordrecht.281310.Google Scholar
Connell, J.H. (1978). Diversity in tropical rainforests and coral reefs. Science 199, 13021310.Google Scholar
Dean, W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
DeMaster, D.J. (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45, 17151732.CrossRefGoogle Scholar
Dyke, A.S. (1984). Quaternary Geology of Boothia Peninsula and Northern District of Keewatin, Central Canadian Arctic.Memoir, vol. 407, Geological Survey of Canada, Ottawa.Google Scholar
Dyke, A.S. (2004). An outline of North American deglaciation with emphasis on central and northern Canada.Ehlers, J., Gibbard, P.L. Quaternary Glaciations—Extent and Chronology. Elsevier, Oxford.373424.Google Scholar
Eggermont, H., Heiri, O.(2012). The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87, 430456.CrossRefGoogle ScholarPubMed
Finkelstein, S.A., Gajewski, K.(2007). A palaeolimnological record of diatom-community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. Holocene 17, 803812.Google Scholar
Fisher, D.A., Koerner, R.M., Reech, N.(1995). Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. Holocene 5, 1924.Google Scholar
Fortin, M.-C. (2010). Post-glacial Chironomidae Population Responses to Climate-driven Variations in Lake Production in the Canadian Arctic Archipelago.(Ph.D. thesis)Ottawa-Carleton Institute of Biology. University of Ottawa, Ottawa, Canada.302 ppGoogle Scholar
Fortin, M.-C., Gajewski, K.(2009). Assessing the use of sediment organic, carbonate and biogenic silica content as indicators of environmental conditions in Arctic lakes. Polar Biology 32, 985998.Google Scholar
Fortin, M.-C., Gajewski, K.(2010a). Holocene climate change and its effect on lake ecosystem production on Northern Victoria Island, Canadian Arctic. Journal of Paleolimnology 43, 219234.CrossRefGoogle Scholar
Fortin, M.-C., Gajewski, K.(2010b). Holocene climate change and its effect on lake ecosystem production in Northern Victoria Island, Canadian Arctic. Quaternary Science Reviews 29, 20992110.Google Scholar
Fortin, M.-C., Gajewski, K.(2011). Modern chironomid assemblages from the Canadian Arctic. GeoHydro 2011Available from:www.lpc.uottawa.ca/members/gajewski/index.html(accessed 19.08.15.)Google Scholar
Fortin, M.-C., Gajewski, K.(2012). Potential problems with the use of gridded climate data in regional quantitative paleoenvironmental studies from data-poor regions. Journal of Paleolimnology 48, 641650.Google Scholar
Fortin, M.-C., Medeiros, A.S., Gajewski, K., Barley, E.M., Larocque-Tobler, I., Porinchu, D.F., Wilson, S.E.(2015). Chironomid-environment relations in northern North America. Journal of Paleolimnology 54, 223237.10.1007/s10933-015-9848-0Google Scholar
Francis, D.R., Wolfe, A.P., Walker, I.R., Miller, G.H.(2006). Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin Island, Nunavut, Arctic Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 236, 107124.CrossRefGoogle Scholar
Gajewski, K. (1995). Modern and Holocene pollen assemblages from some Small Arctic Lakes on Somerset Island, NWT, Canada. Quaternary Research 44, 228236.Google Scholar
Gajewski, K. (2015b). )Impact of Holocene climate variability on Arctic vegetation. Global and Planetary Change 133, 272287.10.1016/j.gloplacha.2015.09.006CrossRefGoogle Scholar
Gajewski, K. (2015a). )Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland. Global and Planetary Change 128, 1423.10.1016/j.gloplacha.2015.02.003Google Scholar
Gajewski, K., Vance, R., Sawada, M., Fung, M., Gignac, L.D., Halsey, L., John, J., Maisongrande, P., Mandell, P., Mudie, P., Richard, P., Sherrin, A., Soroko, J., Vitt, D.(2000). The climate of North America and adjacent ocean waters ca. 6ka. Canadian Journal of Earth Sciences 37, 661681.Google Scholar
Gajewski, K., Bouchard, G., Wilson, S., Kurek, J., Cwynar, L.(2005). Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549, 131143.Google Scholar
Hamilton, P.B., Gajewski, K., Atkinson, D.E., Lean, D.R.S.(2001). Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia 457, 133148.Google Scholar
Heiri, O., Lotter, A.F.(2001). Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, 343350.CrossRefGoogle Scholar
Heiri, O., Ekrem, T., Willassen, E.(2004). Larval Head Capsules of European Micropsectra, Paratanytarsus and Tanytarsus (Diptera: Chironomidae: Tanytarsini).Version 1.0 http://www.bio.uu.nl/∼palaeo/Chironomids/Tanytarsini/intro.htmGoogle Scholar
Jackson, S.T., Sax, D.(2009). Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends in Ecology and Evolution 25, 153160.Google Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., Otto-Bliesner, B.L., Overpeck, J.T., Vinther, B.M., Abbott, M., Axford, Y., Bird, B., Birks, H.J.B., Bjune, A.E., Briner, J., Cook, T., Chipman, M., Francus, P., Gajewski, K., Geirsddttir, Á., Hu, F.S., Kutchko, B., Lamoureux, S., Loso, M., MacDonald, G., Peros, M., Porinchu, D., Schiff, C., Seppä, H., Thomas, E.(2009). Recent warming reverses long-term Arctic cooling. Science 325, 12361239.Google Scholar
Larocque, I. (2001). How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 133142.Google Scholar
Larocque, I., Rolland, N.(2006). Le Guide Visuel des Chironomides sub-fossiles, du Québec " L'Île d'Ellesmere.Rapport de recherche No R-900Université du Québec, Institut national de la recherche scientifique, Québec.Google Scholar
LeBlanc, M., Gajewski, K., Hamilton, P.B.(2004). A diatom-based Holocene palaeoenvironmental record from a mid-arctic lake on Boothia Peninsula, Nunavut, Canada. Holocene 14, 417425.Google Scholar
Medeiros, A.D., Quinlan, R.(2011). The distribution of the Chironomidae (Insecta: Diptera) along multiple environmental gradients in lakes and ponds of the eastern Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 68, 15111527.Google Scholar
Medeiros, A.S., Friel, C.E., Finkelstein, S.A., Quinlan, R.(2012). A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut. Journal of Paleolimnology 47, 661676.Google Scholar
Peros, M.C., Gajewski, K.(2008). Holocene climate and vegetation change on Victoria Island, western Canadian Arctic. Quaternary Science Reviews 27, 235249.Google Scholar
Peros, M.C., Gajewski, K.(2009). Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic. Journal of Paleolimnology 41, 161175.Google Scholar
Podritske, B., Gajewski, K.(2007). Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Canada. Quaternary Science Reviews 26, 31793196.Google Scholar
Porinchu, D.F., MacDonald, G.M., Rolland, N.(2009). A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago. Journal of Paleolimnology 41, 177188.Google Scholar
Quinlan, R., Smol, J.(2001). Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26, 327342.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J.(2013). IntCal13 and Marine13 Radiocarbon Age calibration, 0-50,000 cal BP. Radiocarbon 55, 18691887.Google Scholar
Rolland, N., Larocque, I., Francus, P., Pienitz, R., Laperrière, L.(2008). Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) lake. Holocene 18, 229241.Google Scholar
Rolland, N., Larocque, I., Francus, P., Pienitz, R., Laperrière, L.(2009). Evidence for a warmer period during the 12th and 13th centuries AD from chironomid assemblages in Southampton Island, Nunavut, Canada. Quaternary Research 72, 2737.Google Scholar
Sawada, M., Viau, A., Vettoretti, G., Peltier, W.R., Gajewski, K.(2004). Comparison of North-American pollen-based temperature and global lake-status with CCCma AGCM2 output at 6ka. Quaternary Science Reviews 23, 225244.Google Scholar
Schmidt, S., Wagner, B., Heiri, O., Klug, M., Bennike, O., Melles, M.(2011). Chironomids as indicators of the Holocene climatic and environmental history of two lakes in Northeast Greenland. Boreas 40, 116130.Google Scholar
Steward, E., Michelutti, N., Blais, J., Mallory, M., Douglas, M., Smol, J.(2013). Contrasting the effects of climatic, nutrient and oxygen dynamics on subfossil chironomid assemablages: a paleolimnological experiment from eutrophic High Arctic ponds. Journal of Paleolimnology 49, 205219.CrossRefGoogle Scholar
CAVM Team, (2003). Circumpolar Arctic Vegetation Map. Scale 1: 7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No.1. U.S. Fish and Wildlife Service, Anchorage, Alaska.Google Scholar
Viau, A., Gajewski, K., Sawada, M., Bunbury, J.(2008). Low- and High-frequency climate variability in Beringia during the past 25,000 years. Canadian Journal of Earth Sciences 45, 14351453.Google Scholar
Walker, I.R. (1988). Late–Quaternary Palaeoecology of Chironomidae (Insecta: Diptera) in Lake Sediments in British Columbia.(Ph.D. thesis)Simon Fraser University, Burnaby, British Columbia, Canada.Google Scholar
Walker, I.R. (2000). The WWW Field Guide to Subfossil Midges.http://www.paleolab.ca/wwwguide/Google Scholar
Walker, I.R. (2001). Midges: Chironomidae and related Diptera.Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments. Zoological Indicators vol. 4, Kluwer Academic Publishers, Dordrecht.4366.Google Scholar
Wolfe, A.P. (2003). Diatom community responses to late-Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene 13, 2937.Google Scholar
Zabenskie, S., Gajewski, K.(2007). Post-glacial climatic change on Boothia Peninsula, Nunavut, Canada. Quaternary Research 68, 261270.Google Scholar