Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:56:39.991Z Has data issue: false hasContentIssue false

Multiproxy evidence for terrestrial and aquatic ecosystem responses during the 8.2 ka cold event as recorded at Højby Sø, Denmark

Published online by Cambridge University Press:  20 January 2017

Mikkel Ulfeldt Hede*
Affiliation:
Department of Geography and Geology, Geology Section, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Peter Rasmussen
Affiliation:
Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Nanna Noe-Nygaard
Affiliation:
Department of Geography and Geology, Geology Section, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Annemarie L. Clarke
Affiliation:
APEM (Aquatic Scientists) Ltd, Riverview, A17 Embankment Business Park, Heaton Mersey, Stockport SK4 3GN, UK
Rolf D. Vinebrooke
Affiliation:
Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Jesper Olsen
Affiliation:
Department of Earth Science, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus, Denmark
*
*Corresponding author.E-mail address:[email protected] (M.U. Hede).

Abstract

A sediment succession from Højby Sø, a lake in eastern Denmark, covering the time period 9400-7400 cal yr BP was studied using high-resolution geochemistry, magnetic susceptibility, pollen, macrofossil, diatom, and algal pigment analysis to investigate responses of the terrestrial and aquatic ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250–8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.2 ka cold event as registered in the Greenland ice cores. At Højby Sø, the climate anomaly appears to have started 200–250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500 cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., "g"stsd"ttir, A.M., (2005). The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 11231149.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., (1997). Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 6, 483486.Google Scholar
Andersen, K.K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Fl"ckiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gr"nvold, K., Gundestrup, N.S., Hansson, M., Huber, C., Hvidberg, C.S., Johnsen, S.J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S.O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J.P., Stocker, T., Sveinbj"rnsd"ttir, A.E., Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, Th., Watanabe, O., Wilhelms, F., White, J.W.C., (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Anderson, N.J., (1990). The biostratigraphy and taxonomy of small Stephanodiscus and Cyclostephanos species (Bacillariophyceae) in a eutrophic lake, and their ecological implications. British Phycological Journal 25, 217235.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., Gagnon, J.-M., (1999). Forcing of the cold event 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.Google Scholar
Battarbee, R.W., (1986). Diatom analysis. Berglund, B.E., Handbook of Holocene Palaeoecology and Paleohydrology Wiley & Sons, Chichester., 894.Google Scholar
Battarbee, R.W., (2000). Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19, 107124.Google Scholar
Bennett, K.D., (1983). Devensian late-glacial and Flandrian vegetational history at Hockam Mere, Norfolk, England. II. Pollen accumulation rates. New Phytologist 95, 489504.Google Scholar
Birks, H.J.B., (1981). Late Wisconsin vegetational and climatic history at Kylen Lake, northeastern Minnesota. Quaternary Research 16, 322355.Google Scholar
Carr, N.G., Whitton, B.A., (1973). The biology of blue-green algae. University of California Press, Berkeley., 676.Google Scholar
Conley, D.J., Schelske, C.L., (2001). Biogenic silica. Smol, J.P., Birks, H.J.B., Last, W.M., Tracking Environmental Change Using Lake Sediments: Biological Methods and Indicators Kluwer Academic Publishers, Dordrecht., 281293.Google Scholar
Dansgaard, W., (1993). Evidence for general instability of past climate from a 250 kyr ice core record. Nature 364, 218220.Google Scholar
Davis, M.B., Brubaker, L.B., Webb, T., (1973). Calibration of absolute pollen influx. Birks, H.J.B., West, R.G., Quaternary plant ecology Blackwell, 925.Google Scholar
Davis, M.B., Moeller, R.E., Ford, J., (1984). Sediment focusing and pollen influx. Haworth, E.Y., Lund, J.W.G., Lake sediments and environmental history. Studies in palaeolimnology and palaeoecology in honour of Winifred Tutin Leicester University Press, 261293.Google Scholar
Dean, W.E., (1981). Carbonate minerals and organic matter in sediments of modern north temperate hard-water lakes. SEPM Special Publication No 31, 213231.Google Scholar
Dean, W.E., (1999). The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology 21, 375393.Google Scholar
Dearing, J.A., (1983). Changing patterns of sediment accumulation in a small lake in Scania, southern Sweden. Hydrobiologia 103, 5964.Google Scholar
DeMaster, J., (1979). The marine budgets of silica and 32Si. Ph.D. thesis, Yale University, . 308 pp.Google Scholar
DeMaster, D.J., (1991). Measuring biogenic silica in marine sediments and suspended matter. Hurd, D.C., Spencer, D.W., Marine Particles: Analysis and Characterization. Geophysical Monograph 63, Washington, D.C., American Geophysical Union., 363367.Google Scholar
Ellison, C.R.W., Chapman, M.R., Hall, I.R., (2006). Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, 19291932.Google Scholar
F"gri, K., Iversen, J., (1975). Textbook of pollen analysis. Munksgaard, Copenhagen., 295.Google Scholar
Hammarlund, D., Bj"rck, S., Buchardt, B., Israelson, C., Thomsen, C.T., (2003). Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsj"n, southern Sweden. Quaternary Science Reviews 22, 353370.Google Scholar
Hammarlund, D., Bj"rck, S., Buchardt, B., Thomsen, C.T., (2005). Limnic response to increased effective humidity during the 8200 cal. yr BP cooling event in southern Sweden. Journal of Paleolimnology 34, 471480.Google Scholar
Hilton, J., Lishman, P., Allen, P.V., (1986). The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnology and Oceanography 31, 125133.Google Scholar
Houmark-Nielsen, M., (1987). Pleistocene stratigraphy and glacial history of the central part of Denmark. Bulletin of the Geological Society of Denmark 36, 1189.Google Scholar
Houmark-Nielsen, M, Kj"r, H., (2003). Southwest Scandinavia. 40-15 kyr BP: palaeogeography and environmental change 18, (8, ), 769"786.Google Scholar
Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W., (2005). Phytoplankton pigments in oceanography: guidelines to modern methods. 2. Edition UNESCO Publishing, Paris., 667.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., Steffensen, J.P., (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.Google Scholar
Kleiven, H.K.F., Kissel, C., Laj, C., Ninnemann, U.S., Richter, T.O., Cortijo, E., (2008). Reduced North Atlantic deep water coeval with the Glacial Lake Agassiz freshwater outburst. Science 319, 6064.CrossRefGoogle ScholarPubMed
Klitgaard-Kristensen, D., Sejrup, H.P., Haflidason, H., Johnsen, S., Spurk, M., (1998). A regional 8200 cal. yr BP cooling event in northwest Europe, included by final stages of the Laurentide ice-sheet deglaciation. Journal of Quaternary Science 13, 2, 165169.Google Scholar
Kobashi, T., Severinghaus, J.P., Brook, E.J., Barnola, J.-M., Grachev, A.M., (2007). Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews 26, 12121222.CrossRefGoogle Scholar
Krammer, K., Lange-Bertalot, H., (1999a). Bacillariophyceae, 1. Teil. Naviculaceae. Ettl, H., Gerloff, J., Heynig, H., Mollenhauser, D., S"?wasserflora von Mitteleuropa Vol 2/1, Gustav Fischer Verlag, Stuttgart., 876.Google Scholar
Krammer, K., Lange-Bertalot, H., (1999b). Bacillariophyceae, 2. Teil. Bacillariaceae, Epithemiaceae, Surirellaceae. Ettl, H., Gerloff, J., Heynig, H., Mollenhauser, D., S"?wasserflora von Mitteleuropa Vol 2/2, Gustav Fischer Verlag, Stuttgart., 611.Google Scholar
Krammer, K., Lange-Bertalot, H., (2000). Bacillariophyceae, 3. Teil. Centrales, Fragilariaceae, Eunotiaceae. Ettl, H., Gerloff, J., Heynig, H., Mollenhauser, D., S"?wasserflora von Mitteleuropa Vol 2/3, Gustav Fischer Verlag, Stuttgart., 599.Google Scholar
Krammer, K., Lange-Bertalot, H., (2004). Bacillariophyceae, 4. Teil. Achnanthaceae. Ettl, H., Gerloff, J., Heynig, H., Mollenhauser, D., S"?wasserflora von Mitteleuropa Vol 2/4, Gustav Fischer Verlag, Stuttgart., 468.Google Scholar
Likens, G.E., Davis, M.B., (1975). Post-glacial history of Mirror Lake and its watershed in New Hampshire U.S.A.: an initial report. Verhandlungen Internationale Vereinigung Limnologie 19, 982993.Google Scholar
Magny, M., B"geot, C., Guiot, J., Peyron, O., (2003). Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22, 15891596.Google Scholar
Meyers, P.A., Teranes, J.L., (2001). Sediment organic matter. Last, W.M., Smol, J.P., Tracking environmental change using lake sediments, Vol. 2, : Physical and geochemical methods Kluwer academic publishers, Dordrecht., 239269.Google Scholar
Nesje, A., Dahl, S.O., (2001). The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequence. Journal of Quaternary Science 16, 2, 155166.Google Scholar
Ramsey, C.B., (2008). Deposition models for chronological records. Quaternary Science Reviews 27, 1-2, 4260.Google Scholar
Ramsey, C.B., (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0- 26 cal kyr BP. Radiocarbon 46, 3, 10291058.Google Scholar
Renssen, H., Goosse, H., Fichefet, T., Campin, J.-M., (2001). The 8.2 kyr BP event simulated by a global atmosphere"sea"ice"ocean model. Geophysical Research Letters 28, 8, 15671570.CrossRefGoogle Scholar
Rohling, E.J., P"like, H., (2005). Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975979.CrossRefGoogle Scholar
Round, F.E., Crawford, R.M., Mann, D.G., (1990). The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
Sarmaja-Korjonen, K., Sepp", H., (2007). Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200"cal. yr cold event: a lacustrine record from Lake Arapisto, Finland. The Holocene 17, 4, 457467.Google Scholar
Sepp", H., Hammarlund, D., Antonsson, K., (2005). Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climate. Climate Dynamics 25, 285297.Google Scholar
Sepp", H., Birks, H.J.B., Giesecke, T., Hammarlund, D., Alenius, T., Antonsson, K., Bjune, A.E., Heikkil", M., MacDonald, G.M., Ojala, A.E.K., Telford, R.J., Veski, S., (2007). Spatial structure of the 8200"cal yr BP event in northern Europe. Climate of the Past 3, 225236.Google Scholar
Snowball, I., Zill"n, L., Gaillard, M.-J., (2002). Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences. The Holocene 12, 716.Google Scholar
Stockmarr, J., (1972). Tablets with spores used in absolute pollen analysis. Pollen Et Spores 13, 615621.Google Scholar
Talbot, M.R., Jensen, N.B., L"rdal, T., Filippi, M.L., (2006). Geochemical responses to a major transgression in giant African lakes. Journal of Paleolimnology 35, 467489, .Google Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W.C., Vaughn, B., Popp, T., (2007). The 8.2"ka event from Greenland ice cores. Quaternary Science Reviews 26, 7081.Google Scholar
Tilman, D., Kiesling, R., Sterner, R., Kilham, S.S., Johnson, F.A., (1986). Green, blue-green, and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon, and nitrogen. Archiv Fur Hydrobiologie 106, 473486.Google Scholar
Tinner, W., Lotter, A.F., (2001). Central European vegetation response to abrupt climate change at 8.2"ka. Geology 29, 6, 551554.Google Scholar
Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., (1964"1980). Flora Europaea. Cambridge University Press, Cambridge.Google Scholar
Vellinga, M., Wood, R.A., (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54, 251267.Google Scholar
Veski, S., Sepp", H., Ojala, A.E.K., (2004). Cold event at 8200"yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32, 8, 681684.CrossRefGoogle Scholar
Vinebrooke, R.D., Dixit, S.S., Graham, M.D., Gunn, J.M., Chen, Y.-W., Belzile, N., (2002). Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield. Canadian Journal of Fisheries and Aquatic Sciences 59, 3, 483493.Google Scholar
von Grafenstein, U., Erlenkeuser, H., M"ller, J., Jouzel, J., Johnsen, S., (1998). The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14, 7381.Google Scholar
Wiersma, A.P., Renssen, H., (2006). Model-data comparison for the 8.2"ka BP event: Confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews 25, 6388.Google Scholar
Wolfe, B.B., Edwards, T.W.D., Aravena, R., (1999). Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. Holocene 9, 215222.Google Scholar
Wiersma, A.P., Roche, D.M., Renssen, H., (2008). Facilitating proxy-data interpretation of abrupt climate events using model simulations. PAGES News, Data-Model Comparison 16, 2, 1618.Google Scholar
Wunsam, S., Schmidt, R., Klee, R., (1995). Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences 57, 4, 360386.Google Scholar