Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T09:51:04.609Z Has data issue: false hasContentIssue false

Multiproxy ecosystem response of abrupt Holocene climatic changes in the northeastern Mediterranean sedimentary archive and hydrologic regime

Published online by Cambridge University Press:  16 July 2019

Christina Giamali*
Affiliation:
Faculty of Geology and Geoenvironment, School of Earth Sciences, Department of Historical Geology-Palaeontology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografou, Greece
Efterpi Koskeridou
Affiliation:
Faculty of Geology and Geoenvironment, School of Earth Sciences, Department of Historical Geology-Palaeontology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografou, Greece
Assimina Antonarakou
Affiliation:
Faculty of Geology and Geoenvironment, School of Earth Sciences, Department of Historical Geology-Palaeontology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografou, Greece
Chryssanthi Ioakim
Affiliation:
Institute of Geology and Mineral Exploration (IGME), Olympic Village, 13677 Acharnae, Greece
George Kontakiotis
Affiliation:
Faculty of Geology and Geoenvironment, School of Earth Sciences, Department of Historical Geology-Palaeontology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografou, Greece
Aristomenis P. Karageorgis
Affiliation:
Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athens-Sounio Avenue, 19013 Anavyssos, Greece
Grigoris Roussakis
Affiliation:
Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athens-Sounio Avenue, 19013 Anavyssos, Greece
Vassilis Karakitsios
Affiliation:
Faculty of Geology and Geoenvironment, School of Earth Sciences, Department of Historical Geology-Palaeontology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Zografou, Greece
*
*Corresponding author e-mail address: [email protected] (C. Giamali).

Abstract

Aspects of paleoclimatic and paleoceanographic evolution of the north Aegean Sea through the Holocene are revealed by the study of quantitative variations in planktonic foraminiferal, pteropodal, and palynomorph assemblages; the isotopic composition of planktonic foraminifera; and hydrographic-related indices, extracted from two high-sedimentation rate cores from the North Aegean Trough. Focusing on the last ~10 cal ka BP, the current Holocene subdivision (Greenlandian, Northgrippian, and Meghalayan) confirms the traditional understanding of an evolution from wetter (Greenlandian) to gradually drier (Northgrippian and Meghalayan) climatic conditions and further highlights the role of changing seasonality during this time. The most warm and humid phase corresponds to the time of the sapropel S1 deposition (9.6–6.1 cal ka BP). The Holocene climatic instability of the study area is further supported by six episodes of brief cooling (North Aegean cooling; NAEGC6–NAEGC1) centered at 9.30, 8.05, 7.05, 4.55, 3.55, and 2.05 cal ka BP, reflected by significant faunal changes and oxygen isotope enrichments. These cold/arid events are coeval with equivalent cooling events that have been described in different basins of the Mediterranean Sea, while signal similarities with equivalent changes in the intensity of the Siberian high suggest a climatic link between the studied area and the high-latitude areas.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu-Zied, R.H., Rohling, E.J., Jorissen, F.J., Fontanier, C., Casford, J.S.L., Cooke, S., 2008. Benthic foraminiferal response to changes in bottom water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to Recent times. Marine Micropaleontology 67, 4668.Google Scholar
Alley, R.B., Mayewski, P., Sowers, T., Stuiver, M., Taylor, K.C., Clarck, P.U., 1997 Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.Google Scholar
Antonarakou, A., Kontakiotis, G., Mortyn, P.G., Drinia, H., Sprovieri, M., Besiou, E., Tripsanas, E., 2015. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico. Geochimica et Cosmochimica Acta 170, 6993.Google Scholar
Antonarakou, A., Kontakiotis, G., Zarkogiannis, S., Mortyn, P.G., Drinia, H., Koskeridou, E., Anastasakis, G., 2018. Planktonic foraminiferal abnormalities in coastal and open marine eastern Mediterranean environments: a natural stress monitoring approach in recent and early Holocene marine systems. Journal of Marine Systems 181, 6378.Google Scholar
Antonarakou, A., Kontakiotis, G., Karageorgis, A.P., Besiou, E., Zarkogiannis, S., Drinia, H., Mortyn, P.G., Tripsanas, E., 2019. Eco-biostratigraphic advances on late Quaternary geochronology and paleoclimate: The marginal Gulf of Mexico analogue. Geolοgical Quarterly 63 (1), 178191.Google Scholar
Berner, K.S., Koç, N., Godtliebsen, F., 2010. High frequency climate variability of the Norwegian Atlantic Current during the early Holocene period and a possible connection to the Gleissberg cycle. Holocene 20, 245255.Google Scholar
Björck, S., Muscheler, R., Kromer, B., Andresen, C.S., Heinemeier, J., Johnsen, S.J., Conley, D., Koç, N., Spurk, M., Veski, S., 2001. High-resolution analyses of an early Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology 29, 11071110.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., DeMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571266.Google Scholar
Bonfardeci, A., Caruso, A., Bartolini, A., Bassinot, F., Blanc-Valleron, M.M., 2018. Distribution and ecology of the Globigerinoides ruber–Globigerinoides elongatus morphotypes in the Azores region during the late Pleistocene-Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 491, 92111.Google Scholar
Brayshaw, D.J., Rambeau, C.M.C., Smith, S.J., 2011. Changes in Mediterranean climate during the Holocene: insights from global and regional climate modelling. Holocene 21, 1531.Google Scholar
Buccheri, G., Carpetto, G., Di Donato, V., Esposito, P., Feruzza, G., Pescatore, T., Russo Ermolli, E., et al. , 2002. A high resolution record of the last deglaciation in the southern Tyrrhenian Sea: environmental and climatic evolution. Marine Geology 186, 447470.Google Scholar
Cacho, I., Grimalt, J.O., Canals, M., 2002. Response of the western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular biomarker approach. Journal of Marine Systems 33–34, 253272.Google Scholar
Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Schönfeld, J., Zahn, R., 2001. Variability of the western Mediterranean Sea surface temperatures during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16, 4052.Google Scholar
Capotondi, L., Borsetti, A.M., Morigi, C., 1999. Foraminiferal ecozones, a high resolution proxy for the Late Quaternary biochronology in the central Mediterranean Sea. Marine Geology 153, 253274.Google Scholar
Casford, J.S.L., Abu-Zied, R., Rohling, E.J., Cooke, S., Boessenkool, K.P., Brinkhuis, H., De Vries, C., et al. , 2001. Mediterranean climate variability during the Holocene. Mediterranean Marine Science 2, 4555.Google Scholar
Casford, J.S.L., Abu-Zied, R.H., Rohling, E.J., Cooke, S., Fontanier, C., Leng, M., Millard, A., Thomson, J., 2007. A stratigraphically controlled multiproxy chronostratigraphy for the eastern Mediterranean. Paleoceanography 22, PA4215.Google Scholar
Casford, J.S.L., Rohling, E.J., Abu-Zied, R., Cooke, S., Fontanier, C., Leng, M., Lykousis, V., 2002. Circulation changes and nutrient concentrations in the late Quaternary Aegean Sea: a nonsteady state concept for sapropel formation. Paleoceanography 17, 10241034.Google Scholar
Casford, J.S.L., Rohling, E.J., Abu-Zied, R.H., Fontanier, C., Jorissen, F.J., Leng, M.J., Schmiedl, G., Thomson, J., 2003. A dynamic concept for eastern Mediterranean circulation and oxygenation during sapropel formation. Palaeogeography, Palaeoclimatology, Palaeoecology 190, 103119.Google Scholar
Combourieu-Nebout, N., Peyron, O., Bout-Roumazeilles, V., Goring, S., Dormoy, I., Joannin, S., Sadori, L., Siani, G., Magny, M., 2013. Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea). Climate of the Past 9, 20232042.Google Scholar
Combourieu-Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., Marret, F., 2009. Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data. Climate of the Past 5, 503521.Google Scholar
Comeau, S., Jeffree, R., Teyssié, J.L., Gattuso, J.P., 2010. Response of the Arctic pteropods Limacina helicina to projected future environmental conditions. PLoS ONE 5, e11362.Google Scholar
Cutter, G.A., Radford-Knoery, J., 1991. Determination of carbon, nitrogen, sulfur and inorganic sulfur species in marine particles. In: Hurd, D.C., Spencer, D.W. (Eds.), Marine Particles: Analysis and Characterization. Geophysical Monograph 63. American Geophysical Union, Washington, D.C., pp 5763.Google Scholar
De Lange, G.J., Thomson, J., Reitz, A., Slomp, C.P., Principato, M.S., Erba, E., Corselli, C., 2008. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nature 1, 606610.Google Scholar
Denton, G.H., Karlen, W., 1973. Holocene climatic variations their pattern and possible cause. Quaternary Research 3, 155205.Google Scholar
Desprat, S., Combourieu-Nebout, N., Essallami, L., Sicre, M.-A., Dormoy, I., Peyron, O., Siani, G., Bout Roumazeilles, V., Turon, J.L., 2013. Deglacial and Holocene vegetation and climatic changes in the southern central Mediterranean from a direct land–sea correlation. Climate of the Past 9, 767787.Google Scholar
Di Geronimo, I., 1970. Heteropoda e Pteropoda Thecosomata in sedimenti abissali recenti dello Jonio. Thalassia Salentina 4, 41115.Google Scholar
Drinia, H., Antonarakou, A., Tsourou, T., Kontakiotis, G., Psychogiou, M., Anastasakis, G., 2016. Foraminifera eco-biostratigraphy of the southern Evoikos outer shelf, central Aegean Sea, during MIS 5 to present. Continental Shelf Research 126, 3649.Google Scholar
Ehrmann, W., Schmiedl, G., Hamann, Y., Kuhnt, T., Hemleben, C., Siebel, W., 2007. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 3657.Google Scholar
Emeis, K.C., Struck, U., Blanz, T., Kohly, A., Woß, M., 2003. Salinity changes in the central Baltic Sea (NW Europe) over the last 10 000 years. Holocene 13, 411421.Google Scholar
Emeis, K.C., Struck, U., Schulz, H.M., Rosenberg, M., Bernasconi, S.M., Erlenkeuser, H., Sakamoto, T., Martinez-Ruiz, F.C., 2000. Temperature and salinity of Mediterranean Sea surface waters over the last 16 000 years: constraints on the physical environment of S1 sapropel formation based on stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 259280.Google Scholar
Faust, D., Zielhofer, C., Baena-Escudero, R., Diaz del Olmo, F., 2004. High-resolution fluvial record of late Holocene geomorphic change in northern Tunisia: climatic or human impact? Quaternary Science Reviews 23, 17571775.Google Scholar
Fhlaithearta, S.N., Reichart, G.J., Jorissen, F.J., Fontanier, C., Rohling, E.J., Thomson, J., De Lange, G.J., 2010. Reconstructing the seafloor environment during sapropel formation using benthic foraminiferal trace metals, stable isotopes, and sediment composition. Paleoceanography 25, PA4225.Google Scholar
Fleitmann, D., Mudelsee, M., Burns, S.J., Bradley, S.R., Kramers, J., Matter, A., 2008. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23, PA1102.Google Scholar
Frigola, J., Moreno, A., Cacho, I., Sierro, F.J., Flores, J.A., Grimalt, J.O., Hodell, D.A., Curtis, J.H., 2007. Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22, PA2209.Google Scholar
Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.Google Scholar
Geraga, M., Ioakim, C., Lykousis, V., Tsaila Monopolis, S., Mylona, G., 2010. The high-resolution palaeoclimatic and palaeoceanographic history of the last 24,000 years in the central Aegean Sea, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 101115.Google Scholar
Geraga, M., Mylona, G., Tsaila-Monopoli, S., Papatheodorou, G., Ferentinos, G., 2008. Northeastern Ionian Sea: palaeoceanographic variability over the last 22 ka. Journal of Marine Systems 74, 623638.Google Scholar
Geraga, M., Tsaila-Monopolis, S., Ioakim, C., Papatheodorou, G., Ferentinos, G., 2005. Short-term climate changes in the southern Aegean Sea over the last 48000 years. Palaeogeography, Palaeoclimatololy, Palaeoecology 220, 311332.Google Scholar
Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63, 90104.Google Scholar
Gogou, A., Bouloubassi, I., Lykousis, V., Arnaboldi, M., Gaitani, P., Meyers, P.A., 2007. Organic geochemical evidence of abrupt late glacial-Holocene climate changes in the North Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 120.Google Scholar
Goudeau, M.L.S., Reichart, G.-J., Wit, J.C., de Nooijer, L.J., Grauel, A.-L., Bernasconi, S.M., de Lange, G.J., 2015. Seasonality variations in the central Mediterranean during climate change events in the Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 418, 304318.Google Scholar
Grant, K.M., Grimm, R., Mikolajewicz, U., Marino, G., Ziegler, M., Rohling, E.J., 2016. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes. Quaternary Science Reviews 140, 125141.Google Scholar
Hayes, A., Rohling, E.J., De Rijk, S., Kroon, D., Zachariasse, W.J., 1999. Mediterranean planktic foraminiferal faunas during the last glacial cycle. Marine Geology 153, 239252.Google Scholar
Hemleben, C., Spindler, M., Anderson, O.R., 1989. Modern Planktic Foraminifera. Springer, New York.Google Scholar
Herrle, J.O., Bollmann, J., Gebühr, C., Schulz, H., Sheward, R.M., Giesenberg, A., 2018. Black Sea outflow response to Holocene meltwater events. Scientific Reports 8, 4081.Google Scholar
Howes, E.L., Eagle, R.A., Gattuso, J.P., Bijm, J., 2017. Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day (2012) samples provides baseline for monitoring effects of global change. PLoS ONE 12, e0167891.Google Scholar
İșler, E.B., Aksu, A.E., Hiscott, R.N., 2016. Late Quaternary paleoceanographic evolution of the Aegean Sea: planktonic foraminifera and stable isotopes. Turkish Journal of Earth Science 25, 1945.Google Scholar
Jalut, G., Dedoubat, J.J., Fontugne, M., Otto, T., 2009. Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quaternary International 200, 418.Google Scholar
Janssen, A.W., 2012. Late Quaternary to Recent holoplanktonic Mollusca (Gastropoda) from bottom samples of the eastern Mediterranean Sea: systematics, morphology. Bolletino Malacologico 48, 1105.Google Scholar
Jansson, K.N., Kleman, J., 2004. Early Holocene glacial lake meltwater injections into the Labrador Sea and Ungava Bay. Paleoceanography 19, PA1001.Google Scholar
Jaouadi, S., Lebreton, V., Bout-Roumazeilles, V., Siani, G., Lakhdar, R., Boussoffara, R., Dezileau, L., Kallel, N., Mannai-Tayech, B., Combourieu-Nebout, N., 2016. Environmental changes, climate and anthropogenic impact in south-east Tunisia during the last 8 kyr. Climate of the Past 12, 13391359.Google Scholar
Jimenez-Espejo, F.J., Martinez-Ruiz, F., Rogerson, M., González-Donoso, J.M., Romero, O.E., Linares, D., Sakamoto, T., et al. , 2008. Detrital input, productivity fluctuations, and water mass circulation in the westernmost Mediterranean Sea since the Last Glacial Maximum. Geochemistry, Geophysics, Geosystems 9, 119.Google Scholar
Karageorgis, A.P., Anagnostou, C.L., Kaberi, H., 2005. Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. Applied Geochemistry 20, 6988.Google Scholar
Karageorgis, A.P., Kaberi, H.G., Tengberg, A., Zervakis, V., Anagnostou, C.L., Hall, P., 2003. Comparison of particulate matter distribution, in relation to hydrography, in the mesotrophic Skagerrak and the oligotrophic northeastern Aegean Sea. Continental Shelf Research 23, 17871809.Google Scholar
Karageorgis, A.P., Katsanevakis, S., Kaberi, H., 2009. Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water, Air, and Soil Pollution 204, 243258.Google Scholar
Kontakiotis., G., 2016. Late Quaternary paleoenvironmental reconstruction and paleoclimatic implications of the Aegean Sea (eastern Mediterranean) based on paleoceanographic indexes and stable isotopes. Quaternary International 401, 2842.Google Scholar
Kontakiotis, G., Antonarakou, A., Mortyn, P.G., Drinia, H., Anastasakis, G., Zarkogiannis, S., Möbius, J., 2017. Morphological recognition of Globigerinoides ruber morphotypes and their susceptibility to diagenetic alteration in the eastern Mediterranean Sea. Journal of Marine Systems 174, 1224.Google Scholar
Kontakiotis, G., Antonarakou, A., Zachariasse, W.J., 2013. Late Quaternary palaeoenvironmental changes in the Aegean Sea: interrelations and interactions between north and south Aegean Sea. Bulletin of the Geological Society of Greece 47, 167177.Google Scholar
Kontakiotis, G., Karakitsios, V., Mortyn, P.G., Antonarakou, A., Drinia, H., Anastasakis, G., Agiadi, K., Kafousia, N., De Rafelis, M., 2016. New insights into the early Pliocene hydrographic dynamics and their relationship to the climatic evolution of the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 348364.Google Scholar
Kotthoff, U., Müller, U.C., Pross, J., Schmiedl, G., Lawson, I.T., van de Schootbrugge, B., Schulz, H., 2008a. Late Glacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. Holocene 18, 10191032.Google Scholar
Kotthoff, U., Pross, J., Müller, U.C., Peyron, O., Schmiedl, G., Schulz, H., Bordon, A., 2008b. Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel 1 deduced from a marine pollen record. Quaternary Science Reviews 27, 832845.Google Scholar
Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., Hemleben, C., 2007. Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by benthic foraminifera. Marine Micropaleontology 64, 147162.Google Scholar
LeGrande, A.H., Schmidt, G.A., Shindell, D.T., Field, V., Miller, R.L., Kocj, D.M., Faluvegi, G., Hoffmann, G., 2006. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proceedings of the National Academy of Sciences of the United States of America 103, 837842.Google Scholar
Lirer, F., Sprovieri, M., Vallefuoco, M., Ferraro, L., Pelosi, N., Giordano, L., Capotondi, L., 2014. Planktonic foraminifera as bio-indicators for monitoring the climatic changes occurred during the last 2000 years in the SE Tyrrhenian Sea. Integrative Zoology 9, 542554.Google Scholar
Louvari, M.A., Drinia, H., Kontakiotis, G., Di Bella, L., Antonarakou, A., Anastasakis, G., 2019. Impact of latest-glacial to Holocene sea-level oscillations on central Aegean shelf ecosystems: a benthic foraminiferal palaeoenvironmental assessment of South Evoikos Gulf, Greece. Journal of Marine Systems (in press). https://doi.org/10.1016/j.jmarsys.2019.05.007.Google Scholar
Lykousis, V., Chronis, G., Tselepides, A., 2002. Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea. Journal of Marine Systems 33–34, 313334.Google Scholar
Magny, M., Bégeot, C., 2004. Hydrological changes in the European midlatitudes associated with freshwater outbursts from Lake Agassiz during the Younger Dryas event and the early Holocene. Quaternary Research 61, 181192.Google Scholar
Magny, M., Bégeot, C., Guiot, J., Peyron, O., 2003. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22, 15891596.Google Scholar
Magny, M., Vannière, B., Zanchetta, G., Fouache, E., Touchais, G., Petrika, L., Coussot, C., Walter-Simonnet, A.V., Arnaud, F., 2009. Possible complexity of the climatic event around 4300–3800 cal. BP in the central and western Mediterranean. Holocene 19, 823833.Google Scholar
Marino, G., Rohling, E.J., Sangiorgi, F., Hayes, A., Casford, J.L., Lotter, A.F., Kucera, M., Brinkhuis, H., 2009. Early and middle Holocene in the Aegean Sea: interplay between high and low latitude climate variability. Quaternary Science Reviews 28, 32463262.Google Scholar
Marret, F., Zonnefeld, K., 2003. Atlas of organic walled dinoflagellate cysts. Review of Palaeobotany and Palynology 125, 1200.Google Scholar
Martínez-Ruiz, F., Paytan, A., Kastner, M., González-Donoso, J.M., Linares, D., Bernasconi, S.M., Jimenez-Espejo, F.J., 2003. A comparative study of the geochemical and mineralogical characteristics of the S1 sapropel in the western and eastern Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 190, 2337.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., et al. , 2004. Holocene climate variability. Quaternary Research 62, 243255.Google Scholar
Nesje, A., Dahl, S.O., Bakke, J., 2004. Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans? Holocene 14, 299310.Google Scholar
Nieuwenhuize, J., Maas, Y.E.M., Middelburg, J.J., 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Marine Chemistry 45, 217224.Google Scholar
Papanikolaou, D., Alexandri, M., Nomikou, P., Ballas, D., 2002. Morphotectonic structure of the western part of the North Aegean Basin based on swath bathymetry. Marine Geology 190, 465492.Google Scholar
Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.L., Drescher-Schneider, R., Vannière, B., Magny, M., 2011. Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). Holocene 21, 131146.Google Scholar
Polunin, O., 1988. Flowers of Greece and the Balkans: A Field Guide. Oxford University Press, Oxford.Google Scholar
Rasmussen, S.O., Vinther, B.M., Clausen, H.B., Andersen, K.K., 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, 19071914.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rohling, E.J., Abu-Zied, R., Casford, J.S.L., Hayes, A., Hoogakker, B.A.A., 2009. The marine environment: present and past. In: Woodward, J. (Ed.), The Physical Geography of the Mediterranean. Oxford University Press, New York, pp. 3367.Google Scholar
Rohling, E.J., Jorissen, F.J., De Stigter, H.C., 1997. 200 Year interruption of Holocene sapropel formation in the Adriatic Sea. Journal of Micropalaeontology 16, 97108.Google Scholar
Rohling, E.J., Jorissen, F.J., Vergnaud-Grazzini, C., Zachariasse, W.J., 1993. Northern Levantine and Adriatic Quaternary planktic foraminifera: reconstruction of paleoenvironmental gradients. Marine Micropaleontology 21, 191218.Google Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R.H., Casford, J.S.L., Hayes, A., 2002. Holocene atmosphere ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, 587593.Google Scholar
Rossignol-Strick, M., 1985. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeography, Palaeoclimatology, Palaeoecology 49, 237263.Google Scholar
Roussakis, G., Karageorgis, A.P., Conispoliatis, N., Lykousis, V., 2004. Last glacial–Holocene sediment sequences in North Aegean basins: structure, accumulation rates and clay mineral distribution. Geo-Marine Letters 24, 97111.Google Scholar
Ruan, J., Kherbouche, F., Genty, D., Blamart, D., Cheng, H., Dewilde, F., Hachi, S., Edwards, R.L., Régnier, E., Michelot, J.L., 2016. Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, northern Algeria. Climate of the Past 12, 114.Google Scholar
Sbaffi, L., Wezel, F.C., Curzi, G., Zoppi, U., 2004. Millennial to centennial-scale palaeoclimatic variations during Termination I and the Holocene in the central Mediterranean Sea. Global and Planetary Change 40, 201217.Google Scholar
Schmiedl, G., Kuhnt, T., Ehrmann, W., Emeis, K.C., Hamann, Y., Kotthoff, U., Dulski, P., Pross, J., 2010. Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years. Quaternary Science Reviews 29, 30063020.Google Scholar
Siani, G., Magny, M., Paterne, M., 2013. Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea. Climate of the Past 9, 499515.Google Scholar
Siani, G., Paterne, M., Colin, C., 2010. Late Glacial to Holocene planktonic foraminifera bioevents and climatic record in the South Adriatic Sea. Journal of Quaternary Science 25, 808821.Google Scholar
Sperling, M., Schmiedl, G., Hemleben, C., Emeis, K.C., Erlenkeuser, H., Grootes, P.M., 2003. Black Sea impact on the formation of eastern Mediterranean sapropel S1? Evidence from the Marmara Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 190, 921.Google Scholar
Spero, H.J., Mielke, K.M., Kalve, E.M., Lea, D.W., Pak, D.K., 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography 18, 1022.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended C-14 data-base and revised Calib 3.0 C-14 age calibration program. Radiocarbon 35, 215230.Google Scholar
Teller, J.T., Leverington, D.W., Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, 879887.Google Scholar
Triantaphyllou, M.V., Antonarakou, A., Kouli, K., Dimiza, M., Kontakiotis, G., Papanikolaou, M.D., Ziveri, P., et al. , 2009. Late Glacial–Holocene ecostratigraphy of the south-eastern Aegean Sea, based on plankton and pollen assemblages. Geo-Marine Letters 29, 249267.Google Scholar
Van der Spoel, S., 1976. Pseudothecosomata, Gymnosomata and Heteropoda (Gastropoda). Bohn, Scheltema, and Holkema, Utrecht, the Netherlands.Google Scholar
Velaoras, D., Lascaratos, A., 2005. Deep water mass characteristics and interannual variability in the North and Central Aegean Sea. Journal of Marine Systems 53, 5985.Google Scholar
Verardo, D.J., Froelich, P.N., McIntyre, A., 1990. Determinations of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Research 37, 157165.Google Scholar
Wanner, H., Mercolli, L., Grosjean, M., Ritz, S.P., 2014. Holocene climate variability and change; a data-based review. Journal of the Geological Society 172, 254263.Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, 31093123.Google Scholar
Wiersma, A.P., Renssen, H., 2006. Model data comparison for the 8.2 ka B.P. event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quaternary Science Reviews 25, 6388.Google Scholar
Wilke, I., Meggers, H., Bickert, T., 2009. Depth habitats and seasonal distributions of recent planktic foraminifers in the Canary Islands region (29N) based on oxygen isotopes. Deep Sea Research 56, 89106.Google Scholar
Wilson, J.D., Monteiro, F.M., Schmidt, D.N., Ward, B.A., Ridgwell, A., 2018. Linking marine plankton ecosystems and climate: a new modeling approach to the warm early Eocene climate. Paleoceanography and Paleoclimatology 33, 14391452.Google Scholar
Wit, J.C., Reichart, G.-J., Jung, S.J.A., Kroon, D., 2010. Approaches to unravel seasonality in sea surface temperatures using paired single-specimen foraminiferal δ18O and Mg/Ca analyses. Paleoceanography 25, PA4220.Google Scholar
Yu, S.Y., Colman, S.M., Lowell, T.V., Milne, G.A., Fisher, T.G., Breckenridge, A., Boyd, M., Teller, J.T., 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science 328, 12621266.Google Scholar
Zachariasse, W.J., Jorissen, F.J., Perissoratis, C., Rohling, E.J., Tsapralis, V., 1997. Late Quaternary foraminiferal changes and the nature of sapropel S1 in Skopelos Basin. In: Proceedings of the Fifth Hellenic Symposium of Oceanography and Fisheries, Kavala, Greece, 1, pp. 391394.Google Scholar
Zervakis, V., Georgopoulos, D., Karageorgis, A.P., Theocharis, A., 2004. On the response of the Aegean Sea to climatic variability. International Journal of Climatology 24, 18451858.Google Scholar
Zielhofer, C., Faust, D., Escudero, R.B., Diaz del Olmo, F., Kadereit, A., Moldenhauer, K.-M., Porras, A., 2004. Centennial-scale late-Pleistocene to mid-Holocene synthetic profile of the Medjerda Valley, northern Tunisia. Holocene 14, 851861.Google Scholar
Zonneveld, K.A.F., Marret, F., Versteegh, G., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., et al. , 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and Palynology 191, 1197.Google Scholar