Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T17:47:47.819Z Has data issue: false hasContentIssue false

Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica)

Published online by Cambridge University Press:  20 January 2017

Luigia Di Nicola*
Affiliation:
Scuola di Dottorato in Scienze Polari, Università di Siena, Italy Institute of Geological Sciences, University of Bern, Switzerland
Stefan Strasky
Affiliation:
Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, Switzerland
Christian Schlüchter
Affiliation:
Institute of Geological Sciences, University of Bern, Switzerland
Maria Cristina Salvatore
Affiliation:
Dipartimento di Scienze della Terra, Università La Sapienza, Roma, Italy
Naki Akçar
Affiliation:
Institute of Geological Sciences, University of Bern, Switzerland
Peter W. Kubik
Affiliation:
Paul Scherrer-Institute, c/o Institute of Particle Physics, ETH Zurich, Switzerland
Marcus Christl
Affiliation:
Institute of Particle Physics, ETH Zurich, Switzerland
Haino Uwe Kasper
Affiliation:
Department of Geology and Mineralogy, University of Cologne, Germany
Rainer Wieler
Affiliation:
Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, Switzerland
Carlo Baroni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Italy
*
*Corresponding author. Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012 Bern, Switzerland. Fax: +41 31 631 48 43. Email Address:[email protected] (L. Di Nicola).

Abstract

Geomorphological and glacial geological surveys and multiple cosmogenic nuclide analyses (10Be, 26Al, and 21Ne) allowed us to reconstruct the chronology of variations prior to the last glacial maximum of the East Antarctic Ice Sheet (EAIS) and valley glaciers in the Terra Nova Bay region. Glacially scoured coastal piedmonts with round-topped mountains occur below the highest local erosional trimline. They represent relict landscape features eroded by extensive ice overriding the whole coastal area before at least 6 Ma (pre-dating the build-up of the Mt. Melbourne volcanic field). Since then, summit surfaces were continuously exposed and well preserved under polar condition with negligible erosion rates on the order of 17 cm/Ma. Complex older drifts rest on deglaciated areas above the younger late-Pleistocene glacial drift and below the previously overridden summits. The combination of stable and radionuclide isotopes documents complex exposure histories with substantial periods of burial combined with minimal erosion. The areas below rounded summits were repeatedly exposed and buried by ice from local and outlet glaciers. The exposure ages of the older drift(s) indicate multiple Pleistocene glacial cycles, which did not significantly modify the pre-existing landscape.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R.P., and Kurz, M.D. Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology. Global and Planetary Change 42, (2004). 207225.Google Scholar
Akçar, N., (2006). Paleoglacial records from the Black Sea area of Turkey: field and dating evidence. PhD thesis, University of Bern, .Google Scholar
Armienti, P., and Baroni, C. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology 27, (1999). 617620.2.3.CO;2>CrossRefGoogle Scholar
Armienti, P., Civetta, L., Innocenti, F., Manetti, P., Tripodo, A., Villari, L., and Vita, G. New petrological and geochemical data on Mt. Melbourne volcanic field, northern Victoria Land, Antarctica (II Italian Antarctic Expedition). Memorie della Societa Geologica Italiana 46, (1991). 397424.Google Scholar
Baroni, C. Geomorphological map of the Northern Foothills near the Italian Station, (Terra Nova Bay, Antarctica). Mem. Soc. Geol. Ital. 33, 1987 (1989). 195211.Google Scholar
Baroni, C., and Hall, B.L. A new relative sea-level curve for Terra Nova Bay, Antarctica. Journal of Quaternary Science 19, 4 (2004). 377396.Google Scholar
Baroni, C., and Orombelli, G. Glacial geology and geomorphology of Terra Nova Bay (Victoria Land, Antarctica). Memorie della Societa Geologica Italiana 33, 1987 (1989). 171193.Google Scholar
Baroni, C., and Orombelli, G. Holocene raised beaches at Terra Nova Bay (Victoria Land, Antarctica). Quaternary Research 36, (1991). 157177.CrossRefGoogle Scholar
Baroni, C., and Orombelli, G. Abandoned Penguin Rookeries as Holocene paleoclimatic indicators in Antarctica. Geology 22, (1994). 2326.Google Scholar
Baroni, C. (Ed.), Biasini, A., Bondesan, A., Denton, G.H., Frezzotti, M., Grigioni, P., Meneghel, M., Orombelli, G., Salvatore, M.C., Della Vedova, A.M., Vittuari, L., (2005a). Mount Melbourne Quadrangle, Victoria Land, Antarctica 1:250,000 (Antarctic Geomorphological and Glaciological Map Series). In: Haeberli, W., Zemp, M., Hoelzle, M., Frauenfelder, R. (Eds.), (2005). Fluctuations of Glaciers. A contribution to the Global Environment Monitoring Service (GEMS) and the International Hydrological Programme. Vol VIII, (1995–2000), pp. 3840. World Glacier Monitoring Service, International Association of Hydrological Sciences (International Commission on Snow and Ice). United Nations Environment Programme, and United Nations Educational, Scientific and Cultural Organization, Zürich..Google Scholar
Baroni, C., Noti, V., Ciccacci, S., Righini, G., and Salvatore, M.C. Fluvial origin of the Valley System in northern Victoria Land (Antarctica) from quantitative geomorphic analysis. Geological Society of America Bulletin 117, 1–2 (2005). 212228.CrossRefGoogle Scholar
Baur, H., (1999). A noble-gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity. EOS transactions. AGU Volume 80, (46): Supplement.Google Scholar
Bentley, M.J., Fogwill, C.J., Kubik, P.W., and Sudgen, D.E. Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the last glacial maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of America Bulletin 118, 9–10 (2006). 11491159.Google Scholar
Bierman, P.R., Marsella, K.A., Patterson, C., Davis, P.T., and Caffee, M. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in south-western Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, (1999). 2539.Google Scholar
Brook, E.J., Brown, E.T., Kurz, M.D., Ackert, R.P. Jr., Raisbeck, G.M., and Yiou, F. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al. Geology 23, 12 (1995). 10631066.Google Scholar
Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., and Brook, E.J. Examination of surface exposure ages of Antarctic moraines using in-situ produced 10Be and 26Al. Geochimica et Cosmochimica Acta 55, (1991). 22692283.CrossRefGoogle Scholar
Campbell, I.B., and Claridge, G.C. Antarctica: Soils, Weathering Processes and Environment. (1987). Elsevier, Amsterdam. 368 Google Scholar
Cape Roberts Science Team, (2000). Studies from the Cape Roberts Project, Ross Sea, Antarctica. Initial Report on CRP-3: Terra Antart. 7, 1209.Google Scholar
Cerling, T.E., and Craig, H. Geomorphology and in-situ cosmogenic isotopes. Annual Reviews of Earth and Planetary Sciences 22, (1994). 273317.CrossRefGoogle Scholar
Chinn, T.J. Polar glacier margin and debris features. Memorie della Societa Geologica Italiana 46, (1991). 2544.Google Scholar
Denton, G.H., Borns, H.W. Jr., Grosswald, M.G., Stuvier, M., and Nichols, R.L. Glacial history of the Ross Sea. Antarctic journal of the United States 10, (1975). 160164.Google Scholar
Dunne, J., Elmore, D., and Muzikar, P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 1–2 (1999). 312.Google Scholar
Fabel, D., and Harbor, J. The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology. Annals of Glaciology 28, (1999). 103110.Google Scholar
Fogwill, C.J., Bentley, M.J., Sugden, D.E., Kerr, A.R., and Kubik, P.W. Cosmogenic nuclides 10Be and 26Al imply limited Antarctic Ice Sheet thickening and low erosion in the Shackleton Range for > 1 m.y. Geology 32, 3 (2004). 265268.CrossRefGoogle Scholar
Frezzotti, M., Salavatore, M.C., Vittuari, L., Grigioni, P., De Silvestri, L., (2000). Satellite image map, Northern Foothills and inexpressible island area (Victoria Land, Antartica). Terra Antart. Rep. n.6. Google Scholar
Gosse, J.C., and Phillips, F.M. Terrestrial in situ cosmogenic nuclides: theory and applications. Quaternary Science Reviews 20, (2001). 14751560.Google Scholar
Hofmann, H.J., Beer, J., Bonani, G., von Guten, H.R., Raman, S., Suter, M., Walker, R.L., Woofli, W., and Zimmermann, D. 10Be: half-life and AMS-standards. Nuclear Instruments & Methods in Physics Research. Section B 29, (1987). 3236.CrossRefGoogle Scholar
Ivy-Ochs, S., (1996). The dating of rock surfaces using in situ produced Be-10, Al-26 and Cl-36, with examples from Antarctica and the Swiss Alps. PhD thesis, ETH Zürich, .Google Scholar
Ivy-Ochs, S., Schluechter, C., Kubik, P.W., Dittrich-Hannen, B., and Beer, J. Minimum Be-10 exposure ages of early Pliocene for the Table Mountain Plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica. Geology 23, 11 (1995). 10071010.2.3.CO;2>CrossRefGoogle Scholar
Ivy-Ochs, S., Kerschner, H., and Schluechter, C. Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: the Alpine perspective. Quaternary International (2007). 164165. 5363.Google Scholar
Kohl, C.P., and Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, (1992). 35833587.CrossRefGoogle Scholar
Kubik, P.W., Ivy-Ochs, S., Masarik, J., Frank, M., and Schluechter, C. 10Be and 26Al production rates deduced from an instantaneous event within the dendro-calibration curve, the landslide of Koefels, Ötz Valley, Austria. Earth and Planetary Science Letters 161, (1998). 231241.CrossRefGoogle Scholar
Kyle, P.R. Melbourne Volcanic Province: summary. Antarc. Res. Ser. 49, (1990). 4852.Google Scholar
Lal, D. Cosmic ray labelling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.CrossRefGoogle Scholar
Masarik, J., and Reedy, R.C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth and Planetary Science Letters 136, (1995). 381395.CrossRefGoogle Scholar
Masarik, J., and Wieler, R. Production rates of cosmogenic nuclides in boulders. Earth and Planetary Science Letters 216, (2003). 201208.Google Scholar
Mueller, P., Schmidt Thome, M., Kreuzer, H., Tessensohn, F., and Vetter, U. Cenozoic peralkaline magmatism at the Western margin of the Ross Sea, Antarctica. Memorie della Società Geologica Italiana 46. Ricci, C.A. Atti del Convegno. (1991). Earth Science Investigations in Antarctica, Siena. 46. Ottobre 1989 Google Scholar
Niedermann, S. The 21Ne production rate in quartz revisited. Earth and Planetary Science Letters 183, (2000). 361364.Google Scholar
Niedermann, S. Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Porcelli, D., Ballentine, C.J., and Wieler, R. Noble Gases in Geochemistry and Cosmochemistry. (2002). Mineralogical Society of America, Washington. 731784.Google Scholar
Niedermann, S., Graf, T., and Marti, K. Mass spectrometric identification of cosmic-ray produced neon in terrestrial rocks with multiple neon components. Earth and Planetary Science Letters 118, (1993). 6573.Google Scholar
Oberholzer, P., (2004). Reconstructing paleoclimate and landscape history in Antarctica and Tibet with cosmogenic nuclides. PhD thesis, ETH Zurich.Google Scholar
Oberholzer, P., Baroni, C., Schaefer, J., Orombelli, G., Ivy-Ochs, S., Kubik, P.W., Baur, H., and Wieler, R. Limited Pliocene /Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides. Antarctic Science 15, 4 (2003). 493502.CrossRefGoogle Scholar
Oberholzer, P., Baroni, C., Salvatore, M.C., Baur, H., and Wieler, R. Dating late-Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic Neon in pyroxenes. Antarctic Science 20, 1 (2008). 8998.CrossRefGoogle Scholar
Orombelli, G. Terra Nova Bay: a geographic overview. Ricci, C. Geosciences in Victoria Land, Antarctica. Memorie della Società Geologica Italiana 32, (1989). 6975. Siena Google Scholar
Orombelli, G., Baroni, C., and Denton, G.H. Late Cenozoic glacial history of the Terra Nova Bay region, northern Victoria Land, Antarctica. Geografia Fisica e Dinamica Quaternaria 13, 2, 1990 (1991). 139163.Google Scholar
Samworth, E.A., Warburton, E.K., and Engelbertink, G.A.P. Beta decay of the 26Al ground state. Physical Review C 5, (1972). 138142.Google Scholar
Staiger, J.W., Marchant, D.R., Schaefer, J.M., Oberholzer, P., Johnson, J.V., Lewis, A.R., and Swanger, K.M. Plio-Pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth and Planetary Science Letters 243, (2006). 489503.Google Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research B 105, (2000). 2375323759.Google Scholar
Strand, K., Passchier, S., Näsi, J., (2003). Implications of quartz grain microtextures for onset Eocene/ Oligocene glaciation in Prydz Bay. ODP site 1166, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology 198, 101111. doi:10.1016/S0031-0182(03)00396-1.Google Scholar
Sugden, D.E., and Denton, G.H. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis. Geological Society of America Bulletin 116, (2004). 840857.Google Scholar
Sugden, D.E., Summerfield, M.A., Denton, G.H., Wilch, T.I., McIntosh, W.C., Marchant, D.R., and Rutford, R.H. Landscape development in the Royal Society Range, southern Victoria Land, Antarctica: stability since the middle Miocene. Geomorphology 28, (1999). 181200.CrossRefGoogle Scholar
Sugden, D.E., Balco, G., Cowdery, S.G., Stone, J.O., and Sass, L.C. Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology 67, (2005). 317334.CrossRefGoogle Scholar