Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T09:10:09.489Z Has data issue: false hasContentIssue false

Modern and Holocene Pollen Assemblages from Some Small Arctic Lakes on Somerset Island, NWT, Canada

Published online by Cambridge University Press:  20 January 2017

Konrad Gajewski*
Affiliation:
Département de géographie, Université d'Ottawa, Ottawa, Ontario, Canada KIN 6N5

Abstract

Modern pollen samples from 15 lakes along a north-south transect on western Somerset Island, NWT, Canada, show a decrease in pollen concentrations from the high arctic to the mid-arctic zone, but there are few differences in the pollen percentages between these sites. Long-distance transport accounts for up to 50% of the pollen in these lake sediments. Cores from two lakes show few changes in the percentages of important pollen types, except for an initial period, before 6000 yr B.P., of increased Salix. The pollen concentration of lake RS36 from the mid-arctic is twice that of lake RS29 from the high arctic, and at both sites the concentrations decreased during the past 6000 yr B.P. This suggests a climatic deterioration during the past 6000 yr which has caused a decrease in the abundance of plants on the landscape.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. M. Bartlein, P. J. Brubaker, L. B. Gajewski, K., and Ritchie, J. C. (1989). Modern analogues of late-Quatemary pollen spectra from the western interior of North America. Journal of Biogeography 16 , 573596.Google Scholar
Anderson, P. M. Bartlein, P. J. Brubaker, L. B. Gajewski, K., and Ritchie, J. C. (1991). Vegetation-pollen-climate relationships for the arcto-boreal region of North America and Greenland. Journal of Biogeography 18 , 565582.Google Scholar
Bengtsson, Lars, , and Enell, Magnus., (1986). Chemical analysis. In “Handbook of Holocene palaeoecology and palaeohydrology” (Bjorn Berglund, , Ed.), pp. 423451. Wiley, New York.Google Scholar
Blake, Weston, Jr. Boucherie, Mary, M. Fredskild, Bent, Janssens, Jan, A., and Smol, John, P. (1992). The geomorphological setting, glacial history and Holocene development of ‘Kap Inglefield So,’ Inglefield Land, North-West Greenland. Meddelelser orn Gronland, GeoScience 27 , 142.Google Scholar
Bourgeois, J. C. Koemer, R. M., and Alt, B. T. (1985). Airborne pollen: A unique air mass tracer, its influx to the Canadian High Arctic. Annals of Glaciology 7 , 109116.Google Scholar
Bradley, Raymond, S. (1990). Holocene paleoclimatology of the Queen Elizabeth Islands, Canadian High Arctic. Quaternary Science Reviews 9 , 365384.Google Scholar
Crum, Howard, A. (1986). Illustrated moss flora of Arctic North America and Greenland. 2. Sphagnaceae. (Gert S. Mogensen, Ed). Meddelelser om Gronland, BioScience 18 , 161.Google Scholar
Cwynar, L. C. Burden, E., and McAndrews, J. H. (1979). An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian Journal of Earth Sciences 16 , 11151120.Google Scholar
Dyke, A. S. (1978). Indication of neoglacierization on Somerset Island, District of Franklin. Geological Survey of Canada Paper 78-1B, 215217.Google Scholar
Dyke, A. S. (1983). “Quaternary Geology of Somerset Island, District of Franklin.” Geological Survey of Canada Memoir 404, Ottawa.CrossRefGoogle Scholar
Dyke, Arthur, S., and Morris, Thomas, F. (1990). “Postglacial History of the Bowhead Whale and Driftwood Penetration: Implications for Paleoclimate, Central Canadian Arctic,” Geological Survey of Canada Paper 89-24, pp. 117.Google Scholar
Edlund, S. A. (1990). Bioclimatic zones in the Canadian Arctic Archipelago. In “Canada’s Missing Dimension” (Harington, C. R., Ed.), pp. 421441. Canadian Museum of Nature, Ottawa.Google Scholar
Edlund, S. A., and Alt, B. T. (1989). Regional congruence of vegetation and summer climate patterns in the Queen Elizabeth Islands, Northwest Territories, Canada. Arctic 42 , 323.Google Scholar
Faegri, Knut, , and Kaland, Peter Emil, (1989). “Textbook of Pollen Analysis,” (Knut Krzyinski, , Ed.), 4th ed. Wiley, New York.Google Scholar
Fredskild, B. (1973). Studies in the vegetational history of Greenland. Meddelelser om Gronland 198(4), 1245.Google Scholar
Fredskild, B. (1983). The Holocene vegetational development of the Godthabsfjord area, West Greenland. Meddelelser om Gronland, Geoscience 10 , 128.Google Scholar
Fredskild, B. (1985). The Holocene vegetational development of Tugtuligs-suaq and Qeqertat, Northwest Greenland. Meddelelser om Gronland, Geo-science 14 , 120.Google Scholar
Funder, S. (1978). Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland. Grönlands Geologiske Undersogelse 129 , 166.Google Scholar
Funder, S., and Abrahamsen, N. (1988). Palynology in a polar desert, eastern North Greenland. Boreas 17 , 195207.Google Scholar
Gajewski, K. (1991). Représentation pollinique actuelle à la limite des arbres au Nouveau-Québec. Canadian Journal of Earth Sciences 28 , 643648.Google Scholar
Hyvärinen, H. (1985). Holocene pollen stratigraphy of Baird Inlet, east central Ellesmere Island, arctic Canada. Boreas 14 , 1932.Google Scholar
MacDonald, G. M. Beukens, R. P., and Kieser, W. E. (1991). Radiocarbon dating of limnic sediments: A comparative analysis and discussion. Ecology 72 , 11501155.Google Scholar
MacDonald, Glen, M., and Gajewski, K. (1992). The northern treeline of Canada. In “Geographical Snapshots of North America” (Donald, G. Janelle, Ed.), pp. 3437. Guilford Press, New York.Google Scholar
Maxwell, Barrie., (1992). Arctic climate: Potential for change under global warming. In “Arctic Ecosystems in a Changing Climate” (Stuart Chapin, F. III Robert, L. Jeffries James, F. Reynolds Gaius, R. Shaver Josef Svoboda, , and Ellen Chu, , Eds.), pp. 1134. Academic Press, New York.CrossRefGoogle Scholar
Ovenden, Lynn, (1988). “Holocene Proxy-Climate Data from the Canadian Arctic.” Geological Survey of Canada Paper 88-22, pp. 111.Google Scholar
Porsild, A. E., and Cody, W. J. (1980). “Vascular plants of Continental Northwest Territories, Canada.” National Museum of Natural Sciences, Ottawa, Ontario.CrossRefGoogle Scholar
Ritchie, J. C. (1987). “Postglacial vegetation of Canada.” Cambridge Univ. Press, New York.Google Scholar
Ritchie, J. C. Hadden, K. A., and Gajewski, K. (1987). Modem pollen spectra from lakes in arctic western Canada. Canadian Journal of Botany 65 , 16051613.Google Scholar
Ritchie, J. C., and Lichti-Federovich, S. (1967). Pollen dispersal phenomena in arctic-subarctic Canada. Review of palaeobotany and palynology 3 , 255266.Google Scholar
Savile, D. B. O. (1959). The botany of Somerset Island, District of Franklin, Canadian Journal of Botany 37 , 9591002.Google Scholar
Short, S. Mode, W. M., and Davis, P. T. (1985). The Holocene record from Baffin Island: Modem and fossil pollen record. In “Quaternary Environments” (Andrews, J. T., Ed.), pp. 608642. Allen & Unwin, Boston.Google Scholar
Woo, V., and Zollai, S. C. (1977). “Reconnaissance of the Soils and Vegetation of Somerset and Prince of Wales islands, N.W.T.,” Northern Forest Research Centre Information Report NOR-X-186.Google Scholar
Zoltai, S. C., and Woo, V. (1976). “Soils and Vegetation of Somerset and Prince of Wales Islands, District of Franklin,” Geological Survey of Canada Paper 76-1B, pp. 143145.Google Scholar