Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T17:14:04.422Z Has data issue: false hasContentIssue false

Modeling a 200-Yr Interruption of the Holocene Sapropel S 1

Published online by Cambridge University Press:  20 January 2017

Paul G. Myers
Affiliation:
Department of Meteorology, University of Edinburgh, Edinburgh, United Kingdom, EH9 3JZ
Eelco J. Rohling
Affiliation:
School of Ocean and Earth Sciences, Southampton University, Southampton Oceanography Centre, Waterfront Campus, European Way, Southampton, United Kingdom, SO14 3ZH

Abstract

An oceanic general circulation model, previously used to simulate the conditions associated with the Holocene Sapropel S 1, is used to simulate the effects of a climate deterioration (represented as a cooling event) on the sapropelic circulation mode. The enhanced cooling (2°–3°C) induces deep convection in the Adriatic and the Gulf of Lions and intermediate water formation in the Aegean, where in all cases there had previously been only stagnant unventilated waters. The depths of ventilation (to ∼1250 m) are in agreement with core data from this period. The short decadal timescales involved in modifying the sapropelic circulation suggest that such a climatic deterioration may be associated with the interruption of S 1 between 7100 and 6900 14C yr B.P., which divided the sapropel into two subunits.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethoux, J.P., Gentili, B., (1996). The Mediterranean-sea, coastal and deep sea signatures of climatic and environmental-changes. Journal of Marine Systems 7, 383394.CrossRefGoogle Scholar
Castradori, D., (1993). Calcareous nannofossils and the origin of eastern Mediterranean sapropels. Paleoceanography 8, 459471.CrossRefGoogle Scholar
Cita, M.B., Vergnaud-Grazzini, C., Robert, C., Chamley, H., Ciaranfi, N., d'Onofrio, S., (1977). Paleoclimatic record of a long deep sea core from the eastern Mediterranean. Quaternary Research 8, 205235.CrossRefGoogle Scholar
De Rijk, S., Rohling, E.J., Hayes, A., (1999). Onset of climatic deterioration in the eastern Mediterranean around 7 KY BP; Micropalaeontological data from Mediterranean sapropel interruptions. Marine Geology 153, 337343.Google Scholar
Dong, B., Valdes, P.J., (1995). Sensitivity studies of northern hemisphere glaciation using an atmospheric GCM. Journal of Climate 8, 24712496.2.0.CO;2>CrossRefGoogle Scholar
Fairbanks, R.G., (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Fontugne, M., Arnold, M., Labeyrie, L., Paterne, M., Calvert, S., Duplessy, J.C., (1992). Paleoenvironment, sapropel chronology and Nile river discharge during the last 20,000 years as indicated by deep-sea sediment records in the eastern Mediterranean. Radiocarbon 34, 7588.Google Scholar
Haines, K., Wu, P., (1995). A modelling study of the thermohaline circulation of the Mediterranean Sea: Water formation and dispersal. Oceanologica Acta 18, 401417.Google Scholar
Haney, R.S., (1971). Surface thermal boundary conditions for ocean circulation models. Journal of Physical Oceanography 1, 241248.Google Scholar
Jorissen, F.J., (1999). Benthic foraminiferal successions across Late Quaternary Mediterranean sapropels. Marine Geology 153, 91101.Google Scholar
Jorissen, F.J., Asioli, A., Borsetti, A.M., Capotondi, L., de Vischer, J.P., Hilgen, F.J., Van der Borg, K., Vergnaud-Grazzini, C., Zachariasse, W.J., (1993). Late Quaternary central Mediterranean biochronology. Marine Micropaleontology 21, 169189.Google Scholar
Kallel, N., Paterne, M., Duplessy, J.-C., Vergnaud-Grazzini, C., Pujol, C., Labeyrie, L., Arnold, M., Fontugne, M., Pierre, C., (1997). Enhanced rainfall in the Mediterranean region during the last sapropel event. Oceanologica Acta 20, 697712.Google Scholar
Kullenberg, B., (1958). On the salinity of the water contained in marine sediments. Meddelanden fran Oceanografiska Institutet I Goteborg 21, 138.Google Scholar
Mangini, A., Schlosser, P., (1986). The formation of Eastern Mediterranean sapropels. Marine Geology 72, 115124.CrossRefGoogle Scholar
Myers, P.G., Haines, K., Rohling, E.J., (1998). Modelling the paleo-circulation of the Mediterranean: The last glacial maximum and the Holocene with emphasis on the formation of sapropel S 1 . Paleoceanography 13, 586606.CrossRefGoogle Scholar
Pederson, T.F., Calvert, S.E., (1990). Anoxia vs productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks. American Association of Petroleum Geologists Bulletin 74, 454466.Google Scholar
Perissoratis, C., Piper, D.J.W., (1992). Age, regional variation and shallowest occurrence of S 1 sapropel in the northern Aegean Sea. Geo-Marine Letters 12, 4953.CrossRefGoogle Scholar
Rohling, E.J., Bryden, H.L., (1992). Man-induced salinity and temperature increases in Western Mediterranean deep water. Journal of Geophysical Research 97, 1119111198.CrossRefGoogle Scholar
Rohling, E.J., de Stigter, H.C., Vergnaud-Grazzini, C., Zaalberg, R., (1993). Temporary repopulation by low-oxygen tolerant benthic foraminifera within an Upper Pliocene sapropel: Evidence for the role of oxygen depletion in the formation of sapropels. Marine Micropaleontology 22, 207219.Google Scholar
Rohling, E.J., Hilgen, F.J., (1991). The eastern Mediterranean climate at times of sapropel formation: A review. Geologie en Mijnbouw 70, 253264.Google Scholar
Rohling, E.J., Jorissen, F.J., de Stigter, H.C., (1997). 200 year interruption of Holocene sapropel formation in the Adriatic Sea. Journal of Micropalaeontology 16, 97108.CrossRefGoogle Scholar
Rohling, E.J., (1994). Review and new aspects concerning the formation of eastern Mediterranean sapropels. Marine Geology 122, 128.Google Scholar
Rohling, E.J., De Rijk, S., (1999). Holocene climate optimum and last glacial maximum in the Mediterranean: The marine oxygen isotope record. Marine Geology 153, 5775.Google Scholar
Rohling, E.J., Gieskes, W.W.C., (1989). Late Quaternary changes in Mediterranean intermediate water density and formation rate. Paleoceanography 4, 531545.Google Scholar
Rossignol-Strick, M., (1987). Rainy periods and bottom water stagnation initiating brine accumulation and metal concentrations: 1. The Late Quaternary. Paleoceanography 2, 333360.CrossRefGoogle Scholar
Rossignol-Strick, M., Nesteroff, W., Olive, P., Vergnaud-Grazzini, C., (1982). After the deluge: Mediterranean stagnation and sapropel formation. Nature 295, 105110.Google Scholar
Tang, C.M., Stott, L.D., (1993). Seasonal salinity changes during Mediterranean sapropel deposition 9000 years B.P.: Evidence from isotopic analyses of individual planktonic foraminifera. Paleoceanography 8, 473493.Google Scholar
Targarona, J., Boessekool, K., Brinkhuis, H., Visscher, H., Zonneveld, K., Land–sea correlation of events in relation to the onset and ending of sapropel S 1: A palynological approach. Targarona, J., (1997). Climatic and Oceanographic Evolution of the Mediterranean Region over the Last Glacial–Interglacial Transition: A Palynological Approach. 87112.Google Scholar
Thunell, R.C., Williams, D.F., (1989). Glacial-holocene salinity changes in the Mediterranean Sea: Hydrographic and depositional effects. Nature 338, 493496.Google Scholar
Thunell, R.C., Williams, D.F., Belyea, P.R., (1984). Anoxic events in the Mediterranean Sea in relation to the evolution of late neogene climates. Marine Geology 59, 105134.Google Scholar
Troelstra, S.R., Ganssen, G.M., Van der Borg, K., de Jong, A.F.M., (1991). A Late Quaternary stratigraphic framework for eastern Mediterranean sapropel S 1 based on AMS 14C dates and stable isotopes. Radiocarbon 33, 1521.Google Scholar
Vergnaud-Grazzini, C., Ryan, W.B.F., Cita, M.B., (1977). Stable isotope fractionation, climate change and episodic stagnation in the eastern Mediterranean during the late Quaternary. Marine Micropaleontology 2, 353370.CrossRefGoogle Scholar
Webb, D. J., (1993). An Ocean Model Code for Array Processor Computers. Technical Report 324. , Institute of Oceanographic Sciences, Wormley, U.K.Google Scholar
Wijmstra, T.A., Young, R., Witte, H.J.L., (1990). An evaluation of the climatic conditions during the Late Quaternary in northern Greece by means of multivariate analysis of palynological data and comparison with recent phytosociological and climatic data. Geologie en Mijnbouw 69, 243251.Google Scholar
Wu, P., Haines, K., (1996). Modelling the dispersal of Levantine intermediate water and its role in Mediterranean deep water formation. Journal of Geophysical Research 101, 65916607.Google Scholar
Wu, P., Haines, K., (1998). The general circulation of the Mediterranean Sea from a 100-year simulation. Journal of Geophysical Research 103, 11211135.CrossRefGoogle Scholar