Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T04:28:02.681Z Has data issue: false hasContentIssue false

Mineralogical evidence for a local volcanic origin of the parent material of Bermuda Quaternary paleosols

Published online by Cambridge University Press:  20 January 2017

François Prognon*
Affiliation:
Ecole Nationale Supérieure des Mines de Paris, Centre de Géosciences, 77305 Fontainebleau cedex, France Section of Earth and Environmental Sciences, University of Geneva, Maraîchers 13, 1205 Geneva, Switzerland
Isabelle Cojan
Affiliation:
Ecole Nationale Supérieure des Mines de Paris, Centre de Géosciences, 77305 Fontainebleau cedex, France
Pascal Kindler
Affiliation:
Section of Earth and Environmental Sciences, University of Geneva, Maraîchers 13, 1205 Geneva, Switzerland
Médard Thiry
Affiliation:
Ecole Nationale Supérieure des Mines de Paris, Centre de Géosciences, 77305 Fontainebleau cedex, France
Michel Demange
Affiliation:
Ecole Nationale Supérieure des Mines de Paris, Centre de Géosciences, 77305 Fontainebleau cedex, France
*
Corresponding author. Present address: BRGM, 3 avenue Claude Guillemin, 45060, Orléans, France.

Abstract

The alternation of carbonate deposits and paleosols compose the emerged part of the Bermuda archipelago. The pedological units present a complex and diversified mineralogy. Former studies demonstrated that the paleosols are not primarily a product of the unique dissolution of the surrounding carbonates, but contain a massive input of allochthonous non-carbonate detrital material. Researchers during more than the past three decades have attributed this flux of insoluble residues (IR) to Saharan dusts. We carried out systematic field and mineralogical analyses on the Quaternary paleosols from the Bermuda archipelago. Their mineralogical assemblage predominantly includes carbonates, clay minerals (kaolinite, chlorite and chlorite/vermiculite), phosphates, and aluminium and iron oxides/hydroxides. This assemblage is strikingly close to the mineralogy of the weathered volcanic substrate of Bermuda, but noticeably different from the mineralogy of Saharan dust. Moreover, we found volcanic lithoclasts in numerous paleosol profiles all over the archipelago and in all the recorded time intervals. We thus consider the volcanic seamount underlying Bermuda as the main source of non-carbonate minerals detected in the paleosols. This hypothesis further resolves the anomalous maturity of Bermudan paleosols compared to their southern counterparts in the Bahamas and Barbados.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Mines Paristech, Centre de Géosciences, 77305 Fontainebleau cedex, France.

References

Aumento, F., and Gunn, B.M., (1974). Geology of the Bermuda Seamount, in Geochemistry of Igneous Rocks. www.geokem.com, See Oceanic Islands Basalts/Atlantic/Bermuda, 10 p., (1975). (2005). Google Scholar
Blackburn, G., and Taylor, R.M. Limestones and red soils of Bermuda. Geological Society of American Bulletin 80, (1969). 15951597.Google Scholar
Blackburn, G., and Taylor, R.M. Limestones and red soils of Bermuda; Reply. Geological Society of American Bulletin 81, (1970). 25252526.Google Scholar
Boardman, M.R., McCartney, R.F., and Eaton, M.R. Bahamian paleosols: origin, relation to paleoclimate, and stratigraphic significance. Curran, H.A., and White, B. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper vol. 300, (1995). 3349.Google Scholar
Bricker, O., and Mackenzie, F.T. Limestones and red soils of Bermuda, discussion. Geological Society of America Bulletin 81, (1970). 25232524.Google Scholar
Bricker, O., and Prospero, J.M. Airbone dust on the Bermuda islands and Barbados. EOS, Transaction, American Geophysical Union, Abstract 50, (1969). 176 Google Scholar
Carew, J.L., and Mylroie, J.E. Geology of the Bahamas. Vacher, H.L., and Quinn, T.M. Geology and Hydrogeology of Carbonate Islands. (1997). Elsevier Science, Amsterdam. 91139.Google Scholar
Carew, J.L., and Mylroie, J.E. Depositional Model and Stratigraphy for the Quaternary Geology of the Bahama Islands. Curran, H.A., and White, B. Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Boulder, Geological Society of America Special Paper vol. 300, (1995). 532.Google Scholar
Chen, J.H., and Duce, B.J. The source of sulfate vanadium and mineral matter in aerosol particles over Bermuda. Atmospheric Environment 17, (1983). 20552064.Google Scholar
Dunbar, G.B. A detailed characterization of Dansgaard-Oeschger cycles at site 1063 (Bermuda Rise). Keigwin, L.D., Rio, D., Acton, G.D., Arnold, E. Proceedings of Ocean Drilling Program Scientific Results vol. 172, (2001). 124.Google Scholar
Foos, A.M., and Bain, R.J. Mineralogy, chemistry, and petrography of soils, surface crusts, and soil stones, San Salvador and Eleuthera, Bahamas. Curran, H.A., and White, B. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper vol. 300, (1995). 223232.Google Scholar
Foreman, F. Study of some Bermuda rock. Geological Society of America Bulletin 62, (1951). 12971330.CrossRefGoogle Scholar
Glaccum, R.A., and Prospero, J.M. Saharan aerosols over the Tropical North Atlantic: mineralogy. Marine Geology 37, (1980). 295321.Google Scholar
Hearty, P.J. Revision of the late Pleistocene stratigraphy of Bermuda. Sedimentary Geology 153, (2002). 121.Google Scholar
Hearty, P.J., Olson, S.L., Kaufman, D.S., Edwards, R.L., and Cheng, H. Stratigraphy and geochronology of pitfall accumulations in caves and fissures, Bermuda. Quaternary Science Reviews 23, (2004). 11511171.Google Scholar
Hearty, P.J., Vacher, H.L., and Mitterer, R.M. Aminostratigraphy and ages of Pleistocene limestones of Bermuda. Geological Society of America Bulletin 104, (1992). 471480.Google Scholar
Hearty, Paul J., Olson, Storrs L., (2007). Mega-highstand or megatsunami ? Discussion of McMurtry et al. (Elevated marine deposits in Bermuda record a late Quaternary megatsunami. Sedimentary Geology, accepted manuscript, available online 31 august (2007).Google Scholar
Herwitz, S.R. Stemflow influences on the formation of solution pipes in Bermuda eolianite. Geomorphology 6, (1993). 253271.CrossRefGoogle Scholar
Herwitz, S.R., and Muhs, D.R. Bermuda solution pipe soils; a geochemical evaluation of eolian parent materials. Curran, H.A., and White, B. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper vol. 300, (1995). 311323.Google Scholar
Herwitz, S.R., Muhs, D.R., Prospero, J.M., Mahan, S., and Vaughn, B. Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance. Journal of Geophysical Research 23, (1996). 389400.Google Scholar
Kolla, V., Biscaye, P.E., and Hanley, A.F. Distribution of quartz in Late Quaternary Atlantic sediments in relation to climate. Quaternary Research 11, (1979). 261277.CrossRefGoogle Scholar
Land, L.S., Mackenzie, F.T., and Gould, S.J. The Pleistocene history of Bermuda. Geological Society of America Bulletin 78, (1967). 9931006.Google Scholar
Morimoto, N., Fabries, J., Ferguson, A., Ginzburg, I.V., Roos, M., Seifert, F.A., Zussman, J., Aoki, K., and Gottardi, G. Nomenclature of pyroxenes. American Mineralogist 73, 9–10 (1988). 11231133.Google Scholar
Muhs, D.R., Budahn, J.R., Prospero, J.M., and Carey, S.N. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. Journal of Geosphysical Research 112, (2007). F02009 http://dx.doi.org/10.1029/2005JF000445Google Scholar
Muhs, D.R., Bush, C.A., Stewart, K.C., Rowland, T.R., and Crittenden, R. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and Western Atlantic islands. Quaternary Research 33, (1990). 157177.Google Scholar
Munsell Soil Color Charts revised edition, (1975). Colour plates and explanation guide. New Windsor, 10 pp.Google Scholar
Nriagu, J.O., and Moore, P.B. Phosphate Minerals. (1984). Springer, Berlin. 442 ppGoogle Scholar
Peckenham, J.M., (1981). On the nature and origin of some paleogene melilitic pillowed lava, breccias, and intrusives from Bermuda. M.Sc. Thesis, Halifax, Nova Scotia, Dalhousie University, 306 pp.Google Scholar
Pirsson, L.V. Geology of Bermuda island: the igneous platform. American Journal of Science 38, (1914). 189206.CrossRefGoogle Scholar
Pirsson, L.V. Geology of Bermuda island: petrology of the lava. American Journal of Science 38, (1914). 331334.Google Scholar
Prospero, J.M. Saharan dust transport over the North Atlantic ocean and Mediterranean; an overview. Guerzoni, S. The impact of desert dust across the Mediterranean. Chester. Roy Environmental Science and Technology Library vol. 11, (1996). 133152.Google Scholar
Pye, K., Winspear, N.R., and Zhou, L.P. Thermoluminesence ages of loess and associated sediments in Central Nebraska. Palaeogeography, Palaeoclimatology, and Palaeocology 118, (1995). 7387.Google Scholar
Reynolds, P.R., and Aumento, F.A. Deep Drill 1972: potassium-argon dating of the Bermuda drill core. Canadian Journal of Earth Sciences 1, (1974). 12691273.CrossRefGoogle Scholar
Rich, C.I. Hydroxy-interlayers in expansible layers silicates. Clays and Clays Minerals 1, (1968). 1530.CrossRefGoogle Scholar
Rueger, B.F. Avian origin of quartz grains in organic-rich sediments from Lover's Lake and Warwick Pond, Bermuda. Lewis, R.D., Panuska, B.C. Proceedings of the 11th symposium on the geology of the Bahamas and other carbonate regions vol. 11, (2004). 215230.Google Scholar
Ruhe, R.V., Cady, J.G., and Gomez, R.S. Paleosols of Bermuda. Geological Society of America Bulletin 72, (1961). 11211142.Google Scholar
Sayles, R.W. Bermuda during the Ice Age. Proceedings of the American Academy of Arts and Sciences 66, (1931). 381468.Google Scholar
Strasser, A. Black pebble occurrence and genesis in Holocene carbonate sediments (Florida Keys, Bahamas and Tunisia). Journal of Sedimentary Petrology 54, (1984). 10971109.Google Scholar
Syers, J.K., Jackson, M.L., Berkheiser, V.E., Clayton, R.N., and Rex, R.W. Eolian sediment influence on pedogenesis during the Quaternary. Soil Science 107, (1969). 421427.Google Scholar
Tamura, T. Identification of the 14 Å clay mineral component. American Mineralogist 42, (1957). 107110.Google Scholar
Thiry, M., Forette, N., Schmitt, J.M., (1983). Techniques de diffraction des rayons X et interprétation des diagrammes. Note Technique, Ecoles des Mines, CGGM, : Paris., p. 51.Google Scholar
Tucholke, B.E., and Vogt, P.R. Western North Atlantic: Sedimentary evolution and aspects of tectonic history. Tucholke, B.E., Vogt, P.R. Initial Reports of the Deep Sea Drilling Project vol. 43, (1979). 791825.Google Scholar
Vacher, H.L., Hearty, P.J., and Rowe, M.P. Stratigraphy of Bermuda: nomenclature, concepts, and status of multiple systems of classifications. Curran, H.A., and White, B. Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper vol. 300, (1995). 271294.Google Scholar
Vacher, H.L., and Rowe, M.P. Geology and hydrogeology of Bermuda. Vacher, H.L., and Quinn, T.M. Geology and hydrogeology of carbonate island. Development in sedimentology vol. 54, (1997). 3590.CrossRefGoogle Scholar
Vacher, H.L., and Hearty, P.J. History of Stage 5 Sea Level in Bermuda: Review with New Evidence of a Brief Rise to Present Sea Level During Substage 5a:. Quaternary Science Reviews 8, (1989). 159168.Google Scholar
Vacher, H.L., Rowe, M.P., Garrett, P., (1989). The geologic map of Bermuda. Scale 1:25, 000, London., Oxford Cartographers, .Google Scholar
Vogt, P.R., and Jung, W.-Y. Origin of the Bermuda volcanoes and Bermuda Rise: History, observations, models, and puzzles. Foulger, G.R., and Jurdy, D.M. Plates, Plumes, and Planetary Processes. Geological Society of America Special Paper vol. 430, (2007). Google Scholar