Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T17:17:25.637Z Has data issue: false hasContentIssue false

The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas and New Mexico

Published online by Cambridge University Press:  20 January 2017

Erin Harris-Parks*
Affiliation:
Department of Geosciences, University of Arizona, 1040 E 4th St., Tucson, AZ 85721, USA

Abstract

Black mats are organic-rich sediments and soils that form in wet environments associated with spring discharge. Micromorphological and geochemical analyses of 25 black mats dating to the Younger Dryas Chronozone (12.9–11.7 ka) and early Holocene were conducted to determine their composition and depositional environment. Samples were collected from Arizona, New Mexico, Texas and Nevada. Micromorphological analyses were conducted on thin sections using polarized and blue fluorescent light. These analyses determined that black mats contain humic acids, fine (5–20 μm) plant fragments, diatoms, phytoliths, and gastropods. The dominant type of organic matter in black mats is derived from herbaceous plants, contradicting previous studies that supported algal or charcoal sources. Differences in the micromorphological characteristics of the samples revealed that black mats formed as three different types, organic horizons, moist soils and ponded sediments, depending on their topographic position in relation to the water table. The microscopic evidence found in black mats supports the presence of widespread wet environments in Nevada and Arizona during the Younger Dryas Chronozone, clearly indicating a sustained period of greater effective moisture, optimal for spring discharge and black mat formation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

Alley, R.B., (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event.. Nature 362, 527529.Google Scholar
Altemüller, H.J., Van Villet-Lanoe, B., (1990). Soil thin section fluorescence microscopy.. (Lowell, A.D., Eds.), Developments in Soil Science Volume 19 Elsevier, 565579.Google Scholar
Anderson, D.E., (1997). Younger Dryas research and its implications for understanding abrupt climatic change.. Progress in Physical Geography 21, 230249.CrossRefGoogle Scholar
Anderson, D.G., Faught, M., (2000). Paleoindian artifact distribution: evidence and implications.. Antiquity 74, 507513.CrossRefGoogle Scholar
Babel, U., (1975). Micromorphology of soil organic matter.. (Gieseking, J.E. Eds.), Soil Components.. Springer-Verlag, New York. 369473.Google Scholar
Bouma, J., Fox, C.A., Miedema, R., (1990). Micromorphology of hydromorphic soils: applications for soil genesis and land evaluation.. Lowell, A.D. Developments in Soil Science Volume 19.. Elsevier, 257278.Google Scholar
Briggs, R.W., Wesnousky, S.G., Adams, K.D., (2005). Late Pleistocene and late Holocene lake highstands in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA.. Quaternary Research 64, 257263.CrossRefGoogle Scholar
Broughton, J.M., Madsen, D.B., Quade, J., (2000). Fish remains from Homestead Cave and lake levels of the past 13,000 years in the Bonneville basin.. Quaternary Research 53, 392401.Google Scholar
Cohen, A.D., Spackman, W., (1980). Phytogenic organic sediments and sedimentary environments in the Everglades mangrove complex of Florida. Part III The alteration of plant material in peats and the origin of coal macerals.. PalaeontographicaAbteilung B Palaeophytologie 172, 125149.Google Scholar
Daulton, T.L., Pinter, N., Scott, A.C., (2010). No evidence of nanodiamonds in Younger-Dryas sediments to support an impact event.. Proceedings of the National Academy of Sciences of the United States of America 107, 1604316047.CrossRefGoogle ScholarPubMed
De Deckker, P., (1988). Large Australian lakes during the last 20 million years: sites for petroleum source rock or metal ore deposition, or both?.. Fleet, A.J., Kelts, K., and Talbot, M.R. Lacustrine Petroleum Source Rocks.. Geological Society of London Special Publication 40, 4558.Google Scholar
de Narvaez, C., (1995). Paleohydology and paleotopography of a Las Vegas Spring.. M.S. thesisNorthern Arizona University, Flagstaff.Google Scholar
Dubreuil, C., Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B.R., (1989). Mechanism of formation and chemical structure of Coorongite—1. Role of the resistant biopolymer and of the hyrdocarbons of Botryococcusbraunii. Ultrastructure of Coorongite and its relationship with Torbanite.. Organic Geochemistry 14, 543553.CrossRefGoogle Scholar
Faith, J.T., Surovell, T.A., (2009). Synchronous extinction of North America's Pleistocene mammals.. Proceedings of the National Academy of Sciences of the United States of America 106, 20,64120,645.Google Scholar
Fiedel, S.J., (1999). Older than we thought: implications of corrected dates for Paleoindians.. American Antiquity 64, 95115.CrossRefGoogle Scholar
Firestone, R.B., (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling.. Proceedings of the National Academy of Sciences of the United States of America 104, 1601616021.Google Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., Robinson, G.S., (2009). Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America.. Science 326, 11001103.Google Scholar
Goldberg, P., Miller, C.E., Schiegal, S., Ligouis, B., Berna, F., Conard, N.J., Wadley, L., (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa.. Archaeological and Anthropological Sciences 1, 95122.CrossRefGoogle Scholar
Goncalves, P.A., Mendonca, J.G., Mendonca, J.O., da Silva, T.F., Flores, D., (2013). Paleoenvironmental characterization of a Jurassic sequence on the Bombarral sub-basin (Lusitanian basin, Portugal): insights from palynofacies and organic geochemistry.. International Journal of Coal Geology 113, 2740.CrossRefGoogle Scholar
Gutjahr, C.C.M., (1983). Introduction to incident-light microscopy of oil and gas source rocks.. Geologie En Mijnbouw 62, 417425.Google Scholar
Haas, H., Holliday, V.T., Stuckenrath, R., (1986). Dating of Holocene stratigraphy with soluble and insoluble organic fraction at the Lubbock Lake archaeological site, Texas — an ideal case-study.. Radiocarbon 28, 473485.CrossRefGoogle Scholar
Hatte, C., Hodgins, G., Holliday, V.T., Jull, A.J.T., (2010). Dating human occupation on diatom-phytolith-rich sediment: case studies of Mustang Spring and Lubbock Lake, Texas, USA.. Radiocarbon 52, 1324.CrossRefGoogle Scholar
Haury, E.W., Sayles, E.B., Wasley, W.W., (1959). The Lehner mammoth site, southeastern Arizona.. American Antiquity 25, 230.CrossRefGoogle Scholar
Haynes, C.V. Jr., (1967). Quaternary geology of the Tule Springs Area, Clark County, Nevada.. Wormington, H.M., and Ellis, D. Pleistocene Studies in Southern Nevada.. Nevada State Museum of Anthropology, Carson City. 1128.Google Scholar
Haynes, C.V. Jr., (1995). Geochronology of paleoenvironmental change, Clovis type site, Blackwater Draw, New Mexico.. Geoarchaeology 10, 317388.Google Scholar
Haynes, G., (2002). The Early Settlement of North America: The Clovis Era.. Cambridge University Press, New York.Google Scholar
Haynes, C.V. Jr., (2007a). Appendix A: radiocarbon dating at Murray Springs and Curry Draw.. Haynes, C.V. Jr. Huckell, B.B. Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona.. The University of Arizona Press, Tucson. 229239.Google Scholar
Haynes, C.V. Jr., (2007b). Appendix B: nature and origin of the black mat, stratum F2.. Haynes, C.V. Jr., and Huckell, B.B. Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona.. The University of Arizona Press, Tucson. 240249.Google Scholar
Haynes, C.V. Jr., (2007c). Quaternary geology of the Murray Springs Clovis site.. Haynes, C.V. Jr., and Huckell, B.B. Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona.. The University of Arizona Press, Tucson. 1656.Google Scholar
Haynes, C.V. Jr., (2007d). Clovis investigations in the San Pedro Valley.. Haynes, C.V. Jr., and Huckell, B.B. Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona.. The University of Arizona Press, Tucson. 115.Google Scholar
Haynes, C.V. Jr., (2008). Younger Dryas“blackmats” and the Rancholabrean termination in North America.. Proceedings of the National Academy of Sciences of the United States of America 105, 65206525.CrossRefGoogle Scholar
Haynes, C.V. Jr., Boerner, J., Domanik, K., Lauretta, D., Ballenger, J., Goreva, J., (2010). The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact.. Proceedings of the National Academy of Sciences of the United States of America 107, 40104015.Google Scholar
Hemmings, E.T., Haynes, C.V. Jr., (1969). The Escapule mammoth and associated projectile points, San Pedro Valley, Arizona.. Journal of the Arizona Academy of Science 5, 184188.CrossRefGoogle Scholar
Holliday, V.T., (1985a). Archaeological geology of the Lubbock Lake site, southern High-Plains of Texas.. Geological Society of America Bulletin 96, 14831492.2.0.CO;2>CrossRefGoogle Scholar
Holliday, V.T., (1985b). Early and middle Holocene soils at the Lubbock Lake archaeological site, Texas.. Catena 12, 6178.CrossRefGoogle Scholar
Holliday, V.T., (1995). Stratigraphy and Paleoenvironments of Late Quaternary Valley Fills on the Southern High Plains.. Geological Society of America, Boulder.Google Scholar
Holliday, V.T., (1997). Paleoindian Geoarchaeology of the Southern High Plains.. University of Texas Press, Austin.Google Scholar
Holliday, V.T., (2000). Folsom drought and episodic drying on the Southern High Plains from 10,900–10,200 14C yrB.P.. Quaternary Research 53, 112.CrossRefGoogle Scholar
Holliday, V.T., Meltzer, D.J., Mandel, R., (2011). Stratigraphy of the Younger DryasChronozone and paleoenvironmental implications: Central and Southern Great Plains.. Quaternary International 242, 520533.CrossRefGoogle Scholar
Huckleberry, G., Beck, C., Jones, G.T., Holmes, A., Cannon, M., Livingston, S., Broughton, J.M., (2001). Terminal Pleistocene/early Holocene environmental change at the sunshine locality, north-central Nevada, USA.. Quaternary Research 55, 303312.CrossRefGoogle Scholar
Johnson, E., (1987). Lubbock Lake: Late Quaternary Studies on the Southern High Plains.. Texas A&M University Press, College Station.Google Scholar
Johnson, E., Holliday, V.T., (1981). Late Paleo-Indian activity at the Lubbock Lake site Texas USA.. Plains Anthropologist 26, 173193.CrossRefGoogle Scholar
Jull, A.J., Haynes, C.V., Donaue, D.J., Burr, G.S., Beck, J.W., (1999). Radiocarbon ages at Murray Springs, Arizona, and the influence of climate change on Clovis man.. Mémoires de la Société préhistorique française 26, 339343.Google Scholar
Kovda, I., Mermut, A., (2010). Vertic features.. Stoops, G., Marcelino, V., and Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths.. Elsevier, Amsterdam. 109127.Google Scholar
Littke, R., (1993). Deposition, diagenesis and weathering of organic matter-rich sediments.. Lecture Notes in Earth Sciences 47, 218.Google Scholar
Lovvorn, M., Frison, G., Tieszen, L., (2001). Paleoclimate and Amerindians: evidence from stable isotopes and atmospheric circulation.. Proceedings of the National Academy of Sciences 98, 24852490.Google Scholar
Macphail, R.I., Cruise, G.M., Allen, M.J., Linderholm, J., Reynolds, P., (2004). Archaeological soil and pollen analysis of experimental floor deposits; with special reference to Butser Ancient Farm, Hampshire, UK.. Journal of Archaeological Science 31, 175191.CrossRefGoogle Scholar
Mandel, R., (2008). Buried Paleoindian-age landscapes in stream valleys of the Central Plains, USA.. Geomorphology 101, 342361.Google Scholar
Mangerud, J., Andersen, S.T., Berglund, B.J., Donner, J.J., (1974). Quaternary stratigraphy of Norden, a proposal for terminology and classification.. Boreas 3, 109128.Google Scholar
Marlon, J., (2009). Wildfire responses to abrupt climate change in North America.. Proceedings of the National Academy of Sciences of the United States of America 106, 25192524.Google Scholar
Meltzer, D.J., Holliday, V.T., (2010). Would North American Paleoindians have noticed Younger Dryas age climate changes?.. Journal of World Prehistory 23, 141.CrossRefGoogle Scholar
Mendonca, J.G., Chagas, R.B.A., Menezes, T.R., Mendonca, J.O., da Silva, F.S., Sabadini-Santos, E., (2010). Organic facies of the Oligocene lacustrine system in the Cenozoic Taubate basin, Southern Brazil.. International Journal of Coal Geology 84, 166178.Google Scholar
Mentzer, S.M., (2011). Macro- and micro-scale geoarchaeology of Üçağizli Caves I and II, Hatay, Turkey.. Ph.D ThesisUniversity of Arizona, Tucson.Google Scholar
Mulholland, S.C., Rapp, G.R., (1992). Phytolith systematics: an introduction.. Rapp, G.R., and Mulholland, S.C. Phytolith Systematics: Emerging Issues.. Plenum Press, New York. 114.Google Scholar
Pal, D.K., Balpande, S.S., Srivastava, P., (2001). Polygenetic vertisols of the Purna Valley of central India.. Catena 43, 231249.Google Scholar
Paranjape, M.V., Pal, D.K., Deshpande, S.B., (1997). Genesis of non-vertic deep black soils in a basaltic landform of Maharashtra.. Journal of the Indian Society of Soil Science 45, 174180.Google Scholar
Petersen, H.I., Foopatthanakamol, A., Ratanasthien, B., (2006). Petroleum potential, thermal maturity and the oil window of oil shales and coals in Cenozoic rift basins, central and northern Thailand.. Journal of Petroleum Geology 29, 337360.Google Scholar
Pigati, J.S., Bright, J.E., Shanahan, T.M., Mahan, S.A., (2009). Late Pleistocene paleohydrology near the boundary of the Sonoran and Chihuahuan Deserts, southeastern Arizona, USA.. Quaternary Science Reviews 28, 286300.Google Scholar
Pigati, J.S., Miller, D.M., Bright, J.E., Mahan, S.A., Nekola, J.C., Paces, J.B., (2011). Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California.. Geological Society of America Bulletin 123, 22242239.Google Scholar
Pigati, J.S., Latorre, C., Rech, J.A., Betancourt, J.L., Martinez, K.E., Budahn, J.R., (2012). Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis.. Proceedings of the National Academy of Sciences of the United States of America 109, 72087212.Google Scholar
Pinter, N., Scott, A.C., Daulton, T.L., Podoll, A., Koeberl, C., Anderson, R.S., Ishman, S.E., (2011). The Younger Dryas impact hypothesis: a requiem.. Earth-Science Reviews 106, 247264.Google Scholar
Polyak, V.J., Rasmussen, J.B.T., Asmerom, Y., (2004). Prolonged wet period in the southwestern United States through the Younger Dryas.. Geology 32, 58.Google Scholar
Polyak, V.J., Asmerom, Y., Burns, S.J., Lachniet, M.S., (2012). Climatic backdrop to the terminal Pleistocene extinction of North American mammals.. Geology 40, 10231026.Google Scholar
Puttmann, W., Sun, Y.Z., Kalkreuth, W., (1994). Variation of petrological and geochemical compositions in a sequence of humic coals, cannel coals, and oil shales.. Energy & Fuels 8, 14601468.Google Scholar
Quade, J., (1986). Late Quaternary environmental-changes in the upper Las-Vegas Valley, Nevada.. Quaternary Research 26, 340357.Google Scholar
Quade, J., Mifflin, M.D., Pratt, W.L., McCoy, W., Burckle, L., (1995). Fossil spring deposits in the southern Great-Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada, during Quaternary time.. Geological Society of America Bulletin 107, 213230.Google Scholar
Quade, J., Forester, R., Pratt, W., Carter, C., (1998). Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin.. Quaternary Research 49, 129148.Google Scholar
Ryves, D.B., Battarbee, R.W., Juggins, S., Fritz, S.C., Anderson, N.J., (2006). Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland.. Limnology and Oceanography 51, 13551368.CrossRefGoogle Scholar
Scott, A.C., Pinter, N., Collinson, M.E., Hardiman, M., Anderson, S.R., Brain, A.P.R., Smith, Y.S., Marone, F., Stampanoni, M., (2010). Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas“impactlayer”.. Geophysical Research Letters 37, L14302.Google Scholar
Severinghaus, J.P., Sowers, T., Brook, E.J., Alley, R.B., Bender, M.L., (1998). Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice.. Nature 391, 141146.Google Scholar
Singh, S., (1956). The formation of dark-coloured clay-organic complexes in black soils.. Journal of Soil Science 7, 4358.Google Scholar
Stafford, T., (1981). Alluvial geology and archaeological potential of the Texas Southern High-Plains.. American Antiquity 46, 548565.Google Scholar
Steffensen, J., Andersen, K., Bigler, M., Clausen, H., Dahl-Jensen, D., Fischer, H., (2008). High-resolution Greenland ice core data show abrupt climate change happens in few years.. Science 321, 680684.Google Scholar
Stolt, M.H., Lindbo, D.L., (2010). Soil organic matter.. Stoops, G., Marcelino, V., and Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths.. Elsevier, Amsterdam. 369396.Google Scholar
Stoops, G., Vepraskas, M.J., (2003). Guidelines for Analysis and Description of Soil and Regolith Thin Sections.. Soil Science Society of America, Madison.Google Scholar
Surovell, T.A., Holliday, V.T., Gingerich, J.A.M., Ketron, C., Haynes, C.V., Hilman, I., Wagner, D.P., Johnson, E., Claeys, P., (2009). An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis.. Proceedings of the National Academy of Sciences of the United States of America 106, 1815518158.Google Scholar
Tarnocai, C., Schuppli, P., (1987). Sedimentary peat in Canadian peatlands.. Rubec, C.D.A., and Overund, R.P. Symposium '87 Wetlands/Peatlands: Proceedings, Edmonton Convention Centre Edmonton, Alberta, Canada, August 23–27, 1987. Wetlands/Peatlands '87 Coordinator.. 2537.Google Scholar
Taylor, G.H., Glick, D.C., (1998). Organic Petrology: A New Handbook Incorporating Some Revised Parts of Stach's Textbook of Coal Petrology.. Gebrüder Borntraeger, Berlin.Google Scholar
Teichmüller, M., ("ller, 1982). Origin of the petrographic constitents of coal.. Stach, E., Mackowsky, M.T., Teichmüller, M., Taylor, G.H., Chandra, D., Teichmüller, R., Murchison, D.G., and Zierke, F. Stach's Textbook of Coal Petrology.. 3rd edition Gerbruder Borntraeger, Berlin. 381413.Google Scholar
Tyson, R.V., (1995). Sedimentary Organic Matter: Organic Facies and Palynofacies.. Chapman & Hall, London and New York.Google Scholar
Wagner, J.D.M., Cole, J.E., Beck, J.W., Patchett, P.J., Henderson, G.M., Barnett, H.R., (2010). Moisture variability in the southwestern United States linked to abrupt glacial climate change.. Nature Geoscience 3, 110113.Google Scholar
Wang, H., Follmer, L.R., Liu, J.C., (2000). Isotope evidence of paleo-El Niño–Southern Oscillation cycles in loess-paleosol record in the central United States.. Geology 28, 771774.Google Scholar
Wang, H., Stumpf, A.J., Miao, X., Lowell, T.V., (2012). Atmospheric changes in North America during the last deglaciation from dune-wetland records in the Midwestern United States.. Quaternary Science Reviews 58, 124134.Google Scholar
Winograd, I.J., Robertson, F.N., (1982). Deep oxygenated groundwater — anomaly or common occurrence.. Science 216, 12271230.Google Scholar
Winsborough, B.M., (1995). Diatoms.. Holliday, V.T. Stratigraphy and Paleoenvironments of Late Quaternary Valley Fills on the Southern High Plains.. Geological Society of America, Boulder. 6784.Google Scholar
Yu, Z.C., Wright, H.E., (2001). Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation.. Earth-Science Reviews 52, 333369.Google Scholar
Supplementary material: File

Harris-Parks supplementary material

Supplementary Material 1

Download Harris-Parks supplementary material(File)
File 15.7 KB
Supplementary material: File

Harris-Parks supplementary material

Supplementary Material 2

Download Harris-Parks supplementary material(File)
File 17.9 KB
Supplementary material: File

Harris-Parks supplementary material

Supplementary Material 3

Download Harris-Parks supplementary material(File)
File 28.3 KB