Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T16:16:55.026Z Has data issue: false hasContentIssue false

Marsh benthic Foraminifera response to estuarine hydrological balance driven by climate variability over the last 2000 yr (Minho estuary, NW Portugal)

Published online by Cambridge University Press:  20 January 2017

João Moreno*
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro de Geologia, Departamento de Geologia, Campo Grande, 1749-016 Lisboa, Portugal
Francisco Fatela
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro de Geologia, Departamento de Geologia, Campo Grande, 1749-016 Lisboa, Portugal
Eduardo Leorri
Affiliation:
East Carolina University, Department of Geological Sciences, Greenville, NC 27858-4353, USA
José M. De la Rosa
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, Av. Reina Mercedes 10, 41012 Sevilla, Spain
Inês Pereira
Affiliation:
Universidade de Lisboa, Instituto Superior Técnico, Centro de Ciências e Tecnologias Nucleares, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal
M. Fátima Araújo
Affiliation:
Universidade de Lisboa, Instituto Superior Técnico, Centro de Ciências e Tecnologias Nucleares, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal
M. Conceição Freitas
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Centro de Geologia, Departamento de Geologia, Campo Grande, 1749-016 Lisboa, Portugal
D. Reide Corbett
Affiliation:
East Carolina University, Department of Geological Sciences, Greenville, NC 27858-4353, USA
Ana Medeiros
Affiliation:
Universidade de Lisboa, Instituto Superior Técnico, Centro de Ciências e Tecnologias Nucleares, Estrada Nacional 10, km 139,7, 2695-066 Bobadela LRS, Portugal
*
*Corresponding author. Fax: + 351 21 750 01 19. E-mail address:[email protected] (J. Moreno).

Abstract

A high-resolution study of a marsh sedimentary sequence from the Minho estuary provides a new palaeoenvironmental reconstruction from NW Iberian based on geological proxies supported by historical and instrumental climatic records. A low-salinity tidal flat, dominated by Trochamminita salsa, Haplophragmoides spp. and Cribrostomoides spp., prevailed from AD 140–1360 (Roman Warm Period, Dark Ages, Medieval Climatic Anomaly). This sheltered environment was affected by high hydrodynamic episodes, marked by the increase in silt/clay ratio, decrease of organic matter, and poor and weakly preserved foraminiferal assemblages, suggesting enhanced river runoff. The establishment of low marsh began at AD 1380. This low-salinity environment, marked by colder and wet conditions, persisted from AD 1410–1770 (Little Ice Age), when foraminiferal density increased significantly. Haplophragmoides manilaensis and Trochamminita salsa mark the transition from low to high marsh at AD 1730. Since AD 1780 the abundances of salt marsh species (Jadammina macrescens, Trochammina inflata) increased, accompanied by a decrease in foraminiferal density, reflecting climate instability, when droughts alternate with severe floods. SW Europe marsh foraminifera respond to the hydrological balance, controlled by climatic variability modes (e.g., NAO) and solar activity, thus contributing to the understanding of NE Atlantic climate dynamics.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: LIRIO — Pólo de Estremoz da Universidade de Évora, Convento das Maltezas, 7100-513 Estremoz.

References

Abrantes, F., Lebreiro, S., Rodrigues, T., Gil, I., Bartels-Jónsdóttir, H., Oliveira, P., Kissel, C., and Grimalt, J.O. Shallow marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2,000 years. Quaternary Science Reviews 24, (2005). 24772494.Google Scholar
Abrantes, F., Rodrigues, T., Montanari, B., Santos, C., Witt, L., Lopes, C., and Voelker, A.H.L. Climate of the last millennium at the southern pole of the North Atlantic Oscillation: an inner-shelf sediment record of flooding and upwelling. Climate Research 48, (2011). 261280.CrossRefGoogle Scholar
Alday, M., Cearreta, A., Cachão, M., Freitas, M.C., Andrade, C., and Gama, C. Micropalaeontological record of Holocene estuarine and marine stages in the Corgo do Porto rivulet (Mira River, SW Portugal). Estuarine, Coastal and Shelf Science 66, (2006). 532543.Google Scholar
Álvarez, M., Flores, J., Sierro, F., Diz, P., Francés, G., Pelejero, C., and Grimalt, J. Millennial surface water dynamics in the Ría de Vigo during the last 3000 years as revealed by coccoliths and molecular biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology 218, (2005). 113.Google Scholar
Alves, A. (1996). Causas e Processos da Dinâmica Sedimentar na Evolução Actual do Litoral do Alto Minho. Unpublished PhD thesis Universidade do Minho, Braga, Portugal. 442 pp.Google Scholar
Andersen, H.V. Two new species of Haplophragmoides from the Louisiana coast. Contributions from the Cushman Foundation for Foraminiferal Research 4, (1953). 2122.Google Scholar
Appleby, P.G., and Oldfield, F. Application of 210Pb to sedimentation studies. Ivanovich, M., and Harmon, R.S. Uranium Series Disequilibrium. (1992). Oxford University Press, Oxford. 731778.Google Scholar
Araújo, E.L.S. (2005). Geoturismo: Conceptualização, Implementação e Exemplo de Aplicação ao Vale do Rio Douro no Sector Porto-Pinhão. Unpublished MSc thesis Universidade do Minho, Braga. 213 pp.Google Scholar
Araújo, M.F., Valério, P., and Jouanneau, J.-M. Heavy metal assessment in sediments of the Ave river basin (Portugal) by EDXRF. X-Ray Spectrometry 27, (1998). 305312.Google Scholar
Araújo, M.F., Conceição, A., Barbosa, T., Lopes, M.T., and Humanes, H. Elemental composition of marine sponges from the Berlengas natural park, western Portuguese coast. X-Ray Spectrometry 32, (2003). 428433.Google Scholar
Behre, K.-E. A new Holocene sea-level curve for the southern North Sea. Boreas 36, (2007). 82102. (January) Google Scholar
Benito, G. Paleofloods and historical flood records along the middle Tagus river catchment: climatic and flood hazard implications. Tagus Floods Abstracts. (2006). 35 Google Scholar
Benito, G., Machado, M.J., and Pérez-González, A. Climate change and flood sensitivity in Spain. Branson, J., Brown, A.G., and Gregory, K.J. Global Continental Changes: The Context of Palaeohydrology. Geological Society Special Publication 115, (1996). 9598.Google Scholar
Benito, G., Thorndycraft, V.R., Rico, M., Sánchez-Moya, Y., and Sopeña, A. Palaeoflood and floodplain records from Spain: evidence for long-term climate variability and environmental changes. Geomorphology 101, (2008). 6877.Google Scholar
Benito, G., Rico, M., Sánchez-Moya, Y., Sopeña, A., Thorndycraft, V.R., and Barriendos, M. The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain. Global and Planetary Change 70, (2010). 5363.Google Scholar
Bernárdez, P., González-Álvarez, R., Francés, G., Prego, R., Bárcena, M.A., and Romero, O.E. Late Holocene history of the rainfall in the NW Iberian peninsula — evidence from a marine record. Journal of Marine Systems 72, (2008). 366382.Google Scholar
Bernárdez, P., González-Álvarez, R., Francés, G., Prego, R., Bárcena, M.A., and Romero, O.E. Palaeoproductivity changes and upwelling variability in the Galicia Mud Patch during the last 5000 years: geochemical and microfloral evidence. The Holocene 18, (2008). 12071218.CrossRefGoogle Scholar
Bettencourt, A., Ramos, L., Gomes, V., Dias, J.M.A., Ferreira, G., Silva, M., Costa, L. INAG, Estuários Portugueses. (2003). Ministério das Cidades, Ordenamento do Território e Ambiente, Lisboa. (311 pp.)Google Scholar
Bradley, R.S., and Jones, P.D. ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. The Holocene 3, (1993). 367376.Google Scholar
Brady, H.B. Analysis and descriptions of the Foraminifera. Annals and Magazine of Natural History 4, 6 (1870). 273309.Google Scholar
Brönnimann, P. Paratrochammina (Lepidoparatrochammina) guaratibaensis n. sp. from Brackish Waters of Brazil and a Check List of Recent Trochamminaceans from Brackish Waters (Protista : Foraminiferida). Revue Paléobiologie 5, (1986). 221229.Google Scholar
Brown, J., Colling, A., Park, D., Philips, J., Rothery, D., and Wright, J. Waves, Tides and Shallow-water Processes. (1991). The Open University, (187 pp.)Google Scholar
Burdloff, D., Araújo, M.F., Jouanneau, J.-M., Mendes, I., Monge Soares, A.M., and Dias, J.M.A. Sources of organic carbon in the Portuguese continental shelf sediments during the Holocene period. Applied Geochemistry 23, (2008). 28572870.CrossRefGoogle Scholar
Clarke, M.L., and Rendell, H.M. Effects of storminess, sand supply and the North Atlantic Oscillation on sand invasion and coastal dune accretion in western Portugal. The Holocene 16, (2006). 341355.Google Scholar
Clemmensen, L.B., Murray, A., Heinemeier, J., and de Jong, R. The evolution of Holocene coastal dune fields, Jutland, Denmark: a record of climate change over the past 5000 years. Geomorphology 105, (2009). 303313.Google Scholar
Cook, E.R., Seager, R., Heim, R.R. Jr., Vose, R.S., Herweijer, C., and Woodhouse, C. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. Journal of Quaternary Science 25, (2010). 4861.Google Scholar
Costas, S., Jerez, S., Trigo, R.M., Goble, R., and Rebêlo, L. Sand invasion along the Portuguese coast forced by westerly shifts during cold climate events. Quaternary Science Reviews 42, (2012). 1528.CrossRefGoogle Scholar
Cushman, J.A., and Bronnimann, P. Some new genera and species of foraminifera from brackish water of Trinidad. Contributions from the Cushman Laboratory for Foraminiferal Research 24, (1948). 1521.Google Scholar
De la Rosa, J.M., Araújo, M.F., González-Pérez, J.A., González-Vila, F.J., Soares, A.M., Martins, J.M., Leorri, E., Corbett, R., and Fatela, F. Organic matter sources for tidal marsh sediment over the past two millennia in the Minho River estuary (NW Iberian Peninsula). Organic Geochemistry 53, (2012). 1624.CrossRefGoogle Scholar
Debenay, J.-P., Guiral, D., and Parra, M. Ecological factors acting on microfauna in mangrove swamps. The case of foraminiferal assemblages in French Guiana. Estuarine, Coastal and Shelf Science 55, (2002). 509533.Google Scholar
DeCastro, M., Lorenzo, M., Taboada, J.J., Sarmiento, M., Alvarez, I., and Gómez-Giesteira, M. Influence of teleconnection patterns of precipitation variability and on river flow regimes in the Miño River basin (NW Iberian Peninsula). Climate Research 32, (2006). 6373.Google Scholar
Delgado, A. (2011). Caracterização hidrodinâmica e sedimentar do estuário do rio Minho. Unpublished MSc thesis Universidade do Porto, Portugal. 197 pp.Google Scholar
Dellwig, O., Hinrichs, J., Hild, A., and Brumsack, H.-J. Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach. Journal of Sea Research 44, (2000). 195208.Google Scholar
Desprat, S., Goñi, M.F.S., and Loutre, M.-F. Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planetary Science Letters 213, (2003). 6378.Google Scholar
Devy-Vareta, N. Para uma geografia histórica da floresta portuguesa. do declínio das matas medievais à política florestal do renascimento (séc. xv e xvi). Revista da Faculdade de Letras — Geografia. I Série vol. I, (1986). Porto, 537.Google Scholar
Domingos, S.I.S. (2006). Análise do índice de seca Standardized Precipitation Index (SPI) em Portugal Continental e sua comparação com o Palmer Drought Severity Index (PDSI). Unpublished Msc thesis Universidade de Lisboa, Portugal. 53 pp.Google Scholar
Domínguez-Castro, F., Santisteban, J.I., Barriendos, M., and Mediavilla, R. Reconstruction of drought episodes for central Spain from rogation ceremonies recorded at Toledo Cathedral from 1506 to 1900: a methodological approach. Global and Planetary Change 63, (2008). 230242.Google Scholar
Do Ó, A., and Roxo, M.J. Drought events in Southern Portugal from the 12th to the 19th centuries: integrated research from descriptive sources. Natural Hazards 47, (2008). 5563.Google Scholar
Drago, T., Freitas, M.C., Rocha, F., Cachão, M., Moreno, J., Naughton, F., Fradique, C., Araújo, F., Silveira, T., Oliveira, A., Cascalho, J., and Fatela, F. Paleoenvironmental evolution of estuarine systems during the last 14 000 years — the case of Douro estuary (NW Portugal). Journal of Coastal Research, SI 39, (2006). 186192.Google Scholar
Duhau, S. Solar activity, Earth's rotation rate and climate variations in the secular and semi-secular time scales. Physics and Chemistry of the Earth 31, (2006). 99108.Google Scholar
Fatela, F., and Taborda, R. Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology 45, (2002). 169174.Google Scholar
Fatela, F., Moreno, J., and Antunes, C. Salinity influence on foraminiferal tidal marsh assemblages of NW Portugal: an anthropogenic constraint?. Thalassas, An International Journal of Marine Sciences 23, (2007). 5163.Google Scholar
Fatela, F., Moreno, J., Moreno, F., Araújo, M.F., Valente, T., Antunes, C., Taborda, R., Andrade, C., and Drago, T. Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal). Marine Micropaleontology 70, (2009). 7088.Google Scholar
Fatela, F., Moreno, J., Leorri, E., and Corbett, R. High marsh foraminiferal assemblages response to intra-decadal and multi-decadal precipitation variability, between 1934 and 2010 (Minho, NW Portugal). Journal of Sea Research (2013). http://dx.doi.org/10.1016/j.seares.2013.07.021Google Scholar
Font, Tullot I. Historia del clima de España. (1988). Spanish Meteorological Institute (INM), Madrid. (297 pp.)Google Scholar
Gehrels, W.R. Determining relative sea level change from salt marsh foraminifera and plant zones on the coast of Maine, USA. Journal of Coastal Research 10, (1994). 9901009.Google Scholar
Gehrels, W.R., and Newman, S.W.G. Salt-marsh foraminifera in Ho Bugt, western Denmark, and their use as sea-level indicators. Danish Journal of Geography 104, (2004). 4958.Google Scholar
Gil-Garcia, M.J., Ruiz Zapata, M.B., Mediavilla, R., Santisteban, J.I., Dominguez-Castro, F., and Dabrio, C.J. Registro de los cambios humanos y naturales en el humedal de las Tablas de Daimiel (Ciudad Real, España). Geo-Temas 10, (2008). 14711474.Google Scholar
Gómez-Gesteira, M., Gimeno, L., de Castro, M., and Lorenzo, M.N. The state of climate in NW Iberia. Climate Research 48, (2011). 109144.Google Scholar
González-Álvarez, R. (2013). Cambios climáticos de pequeña magnitude durante el Holoceno: sus efectos en la paleoceanografía de la plataforma continental gallega. Unpublished PhD thesis Universidade de Vigo, España. 306 pp.Google Scholar
Graham, N.E., Ammann, C.M., Fleitmann, D., Cobb, K.M., and Luterbacher, J. Support for global climate reorganization during the “medieval climate anomaly.”. Climate Dynamics 37, (2011). 12171245. http://dx.doi.org/10.1007/s00382-010-0914-zGoogle Scholar
Granja, H.M. (1990). Representar a geodinâmica da zona costeira: o passado e o presente; que futuro?. Unpublished PhD Thesis Universidade do Minho, Braga, Portugal. 347 pp.Google Scholar
Granja, H.M., and Carvalho, G.S. Dunes and Holocene deposits of the coastal zone of Portugal, north Mondego Cape. Carter, R.W.G., Curtis, T.G.F., and Sheehy-Skeffington, M.J. Coastal Dunes: Geomorphology, Ecology and Management for Conservation. Proceedings of the Third European Dune Congress, Galway, Ireland. (1992). 4350.Google Scholar
Granja, H.M. Evidence for Late Pleistocene and Holocene sea-level, neo-tectonic and climatic control in the coastal zone of northwest Portugal. Geologie en Mijnbouw 77, (1999). 233245.Google Scholar
Granja, H.M. Multidisciplinary analysis of historical sources — The geomorphological approach. European Seaport Systems in the early modern age. A comparative approach. International Workshop Proceedings. Porto, IHM-UP. (2007). 7078.Google Scholar
Haigh, J.D. The sun and the earth's climate. Living Reviews in Solar Physics 4, (2007). 164. (URL accessed 03.12.13: http://www.livingreviews.org/lrsp-2007-2 ) Google Scholar
Haslett, J., and Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. Applied Statistics 57, (2008). 399418.Google Scholar
Hayward, B.W., Grenfell, H.R., Reid, C.M., and Hayward, K.A. Recent New Zealand Shallow-water Benthic Foraminifera: Taxonomy, Ecologic Distribution, Biogeography, and Use in Paleoenvironmental Assessment. (1999). Institute of Geological & Nuclear Sciences, Lower Hutt, New Zealand. (monograph 21, 264 pp.)Google Scholar
Head, K. Manual of soil laboratory testing. Volume 1: Soil Classification and Compaction Tests (1980). Pentech Press, London. (339 pp.)Google Scholar
Hippensteel, S.P., Martin, R.E., and Harris, M.-S. Records of prehistoric hurricanes on the South Carolina coast based on micropaleontological and sedimentological evidence, with comparison to other Atlantic Coast records: discussion. Geological Society of America Bulletin 117, (2005). 250253.Google Scholar
Horton, B.P. The distribution of contemporary intertidal foraminifera at Cowpen Marsh, Tees Estuary, UK: implications for studies of Holocene sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 149, (1999). 127149.Google Scholar
Horton, B.P., and Edwards, R.J. The application of local and regional transfer functions to the reconstruction of Holocene sea levels, north Norfolk, England. The Holocene 15, (2005). 216228.Google Scholar
Horton, B.P., and Murray, J.W. Patterns in cumulative increase in live and dead species from foraminiferal time series of Cowpen Marsh, Tees Estuary, UK: implications for sea-level studies. Marine Micropaleontology 58, (2006). 287315.Google Scholar
Horton, B.P., and Culver, S.J. Modern intertidal foraminifera of the Outer Banks, North Carolina, U.S.A. and their applicability for sea-level studies. Journal of Coastal Research 24, (2008). 11101125.Google Scholar
Jager, C., and Duhau, S. Episodes of relative global warming. Journal of Atmospheric and Solar-Terrestrial Physics 71, (2009). 194198.Google Scholar
Jager, C., and Nieuwenhuijzen, H. Terrestrial ground temperature variations in relation to solar magnetic variability, including the present Schwabe cycle. Natural Science 5, (2013). 11121120.Google Scholar
Keigwin, L.D., and Pickart, R.S. Slope water current over the Laurentian Fan on interannual to millenial time scales. Science 286, (1999). 520523.Google Scholar
Keller, C. 1000 years of climate change. Advances in Space Research 34, (2004). 315322.Google Scholar
Kolditz, K., Dellwig, O., Barkowski, J., Bahlo, R., Leipe, T., Freund, H., and Rgen Brumsack, H.-J. Geochemistry of Holocene salt marsh and tidal flat sediments on a barrier island in the southern North Sea (Langeoog, North-west Germany). Sedimentology 59, (2012). 337355.Google Scholar
Lamb, H.H. Climate History and the Future. (1985). Princeton University Press, (835 pp.)Google Scholar
Lean, J.L. Cycles and trends in solar irradiance and climate. WIREs: Climate Change 1, (2010). 111122. http://dx.doi.org/10.1002/wcc.018Google Scholar
Lebreiro, S.M., Frances, G., Abrantes, F., Diz, P., Bartels-Jónsdóttir, H.B., Stroynowski, Z.N., Gil, I.M., Pena, L.D., Rodrigues, T., Jones, P.D., Nombela, M.A., Alejo, I., Briffa, K.R., Harris, I., and Grimalt, J.O. Climate change and coastal hydrographic response along the Atlantic Iberian margin (Tagus Prodelta and Muros Ría) during the last two millennia. The Holocene 16, (2006). 10031015.Google Scholar
Leorri, E., Horton, B.P., and Cearreta, A. Development of a foraminifera-based transfer function in the Basque marshes. Marine Geology 251, (2008). 6074.Google Scholar
Leorri, E., and Cearreta, A. Quantitative assessment of the salinity gradient within the estuarine systems in the southern Bay of Biscay using benthic foraminifera. Continental Shelf Research 29, (2009). 12261239.Google Scholar
Leorri, E., and Cearreta, A. Recent sea-level changes in the southern Bay of Biscay: transfer function reconstructions from salt-marshes compared with instrumental data. Scientia Marina 73, (2009). 287296.Google Scholar
Leorri, E., Gehrels, W.R., Horton, B.P., Fatela, F., and Cearreta, A. Distribution of foraminifera in salt marshes along the Atlantic coast of SW Europe: tools to reconstruct past sea-level variations. Quaternary International 221, (2010). 104115.Google Scholar
Leorri, E., Cearreta, A., Corbett, R., Blake, W., Fatela, F., Gehrels, R., and Irabien, M.J. Identification of suitable areas for high-resolution sea-level studies in SW Europe using commonly applied 210Pb models. Geogaceta 48, (2010). 3538.Google Scholar
Leorri, E., Fatela, F., Cearreta, A., Moreno, J., Antunes, C., and Drago, T. Assessing the performance of a foraminifera-based transfer function to estimate sea-level changes in northern Portugal. Quaternary Research 75, (2011). 278287.Google Scholar
Leorri, E., Drago, T., Fatela, F., Bradley, S., Moreno, J., and Cearreta, A. Late Glacial and Holocene coastal evolution in the Minho estuary (N. Portugal): implications for understanding sea-level changes in Atlantic Iberia. The Holocene 23, (2013). 352362.Google Scholar
Leri, A.C., and Myneni, S.C.B. Natural organobromine in terrestrial ecosystems. Geochimica et Cosmochimica Acta 77, (2012). 110.Google Scholar
Leri, A.C., Hakala, A., Marcus, M.A., Lanzirotti, A., Reddy, C.M., and Myneni, S.C.D. Natural organobromine in marine sediments: new evidence of biogeochemical Br cycling. Global Biogeochemical Cycles 24, GB4017 (2010). 115.Google Scholar
Llasat, M.-C., Barriendos, M., Barrera, A., and Rigo, T. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. Journal of Hydrology 313, (2005). 3247.Google Scholar
Lockwood, M. Solar Influence on Global and Regional Climates. Surveys in Geophysics 33, (2012). 503534. http://dx.doi.org/10.1007/s10712-012-9181-3Google Scholar
Lockwood, M., Harrison, R.G., Woollings, T., and Solanki, S.K. Are cold winters in Europe associated with, low solar activity?. Environmental Research Letters 5, 024001 (2010). 17. http://dx.doi.org/10.1088/1748-9326/5/2/024001CrossRefGoogle Scholar
Loeblich, A.R. Jr., Tappan, H. Foraminiferal Genera and their Classification v. 1, (1988). Van Nostrand Reinhold Company, (970 pp., v. 2, 847 pl.)Google Scholar
Luque, J.A., and Juliá, R. Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sedimentary Geology 148, (2002). 343355.Google Scholar
Luterbacher, J., Rickli, R., Xoplaki, E., Tinguely, C., Beck, C., Pfister, C., and Wanner, H. The Late Maunder Minimum (1675–1715) — a key period for studying decadal scale climatic change in Europe. Climatic Change 49, (2001). 441462.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F. Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326, (2009). 12561260.Google Scholar
Marques, J. Estados do Tempo e Outros Fenómenos na Região de Braga, no Século XVII VoI. L, n. 2, (2001). Bracara Augusta, 104105. (117118.)Google Scholar
Marquina, J.R. Crecidas Extraordinarias del Rio Duero. Revista de Obras Públicas I, 3 (1949). 202213.Google Scholar
Martín-Chivelet, J., Muñoz-García, M.B., Edwards, R.L., Turrero, M.J., and Ortega, A.I. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Global and Planetary Change 77, (2011). 112.Google Scholar
Martínez Cortizas, A., Pontevedra-Pombal, X., Garcia-Rodeja, E., Novoa-Muñoz, J.C., and Shotyk, W. Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284, (1999). 939942.Google Scholar
Martin-Puertas, C., Valero-Garces, B.L., Mata, M.P., Gonzalez-Samperiz, P., Bao, R., Moreno, A., and Stefanova, V. Arid and humid phases in Southern Spain during the last 4000 years: the Zonar Lake record, Cordoba. The Holocene 18, (2008). 115.Google Scholar
Martín-Puertas, C., Matthes, K., Brauer, A., Muscheler, R., Hansen, F., Petrick, C., Aldahan, A., Possnert, G., and van Geel, B. Regional atmospheric circulation shifts induced by a grand solar minimum. Nature Geoscience 5, (2012). 397401.Google Scholar
McKee, T.B., Doesken, N.J., and Kleist, J. The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology. (1993). American Meteoreological Society, Boston. 179184.Google Scholar
Mohamed, K.J., Rey, D., Rubio, B., Vilas, F., and Frederichs, T. Interplay between detrital and diagenetic processes since the last glacial maximum on the northwest Iberian continental shelf. Quaternary Research 73, (2010). 507520.Google Scholar
Montagu, G. Testacea Brittanica supplement. (1808). S. Woolmer, Exeter, England. (183 pp.)Google Scholar
Moreira, E.E., Mexia, J.T., and Pereira, L.S. Are drought occurrence and severity aggravating? A study on SPI drought class transitions using log-linear models and ANOVA-like inference. Hydrological Earth System Sciences 16, (2012). 30113028.Google Scholar
Moreno, F., Araújo, M.F., Moreno, J., Fatela, F., and Drago, T. Caracterização geoquímica de sedimentos superficiais do estuário do rio Minho e do sapal de Caminha (NW de Portugal) — estimativa do potencial de stress biológico. XIV Semana de Geoquímica & VIII Congreso de Geoquímica dos Países de Língua Portuguesa. (2005). Universidade de Aveiro, Portugal. 675678.Google Scholar
Moreno, F., Moreno, J., Fatela, F., Valente, T., Guise, L., Araújo, M.F., and Drago, T. Geoquímica de sedimentos em ambientes típicos de sapal — o exemplo do sapal de Caminha (NW de Portugal). XIV Semana de Geoquímica & VIII Congreso de Geoquímica dos Países de Língua Portuguesa. (2005). Univ. Aveiro, Portugal. 661664.Google Scholar
Moreno, J., Fatela, F., Andrade, C., Cascalho, J., Moreno, F., and Drago, T. Living Foraminiferal assemblages from Minho/Coura estuary (Northern Portugal): a stressfull environment. Thalassas 21, (2005). 1728.Google Scholar
Moreno, J., Fatela, F., Andrade, C., and Drago, T. Distribution of “living” Pseudothurammina limnetis (Scott and Medioli): an occurrence on the brackish tidal marsh of Minho/Coura estuary — Northern Portugal. Revue de Micropaleontologie 49, (2006). 4553.Google Scholar
Moreno, J., Valente, T., Moreno, F., Fatela, F., Guise, L., and Patinha, C. Calcareous foraminifera occurrence and calcite-carbonate equilibrium conditions — a case study in Minho/Coura estuary (N Portugal). Hydrobiologia 597, (2007). 177184.Google Scholar
Mörner, N.-X. Solar Minima, Earth's rotation and Little Ice Ages in the past and in the future. The North Atlantic-European case. Global and Planetary Change 72, (2010). 282293.Google Scholar
Murray, J.W. An Atlas of British Recent Foraminiferids. (1971). Heinemann Educational Books, (244 pp.)Google Scholar
Murray, J.W. Ecology and Applications of Benthic Foraminifera. (2006). Elsevier Inc., Cambridge. (438 pp.)Google Scholar
Nittrouer, C.A., Sternberg, R.W., Carpenter, R., and Bennett, J.T. The use of 210Pb geochronology as a sedimentological tool: application to the Washington Continental Shelf. Marine Geology 31, (1979). 297316.Google Scholar
Parnell, A., Haslett, J., Allen, J., Buck, C., and Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27, (2008). 18721885.Google Scholar
Pfister, C., Garnier, E., Alcoforado, M.-J., Wheeler, D., Luterbacher, J., Nunes, M.F., and Taborda, J.P. The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe. Climatic Change 101, (2010). 281310.Google Scholar
Phleger, F.B. Patterns of marsh foraminifera, Galveston Bay, Texas. Limnology and Oceanography 10, (1965). 169180.Google Scholar
Pires, V.C., Álvaro, S., and Mendes, L. Riscos de secas em Portugal continental. Territorium 17, (2010). 2734.Google Scholar
Pla, S., and Catalan, J. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climate Dynamics 24, (2005). 263278.Google Scholar
Poirier, C., Chaumillon, E., and Arnaud, F. Siltation of river-influenced coastal environments: respective impact of late Holocene land use and high-frequency climate changes. Marine Geology 290, (2011). 5162.Google Scholar
Price, N.B., Calvert, S.E., and Jones, P.G.W. Distribution of iodine and bromine in sediments of the south western Barents Sea. Journal of Marine Research 28, (1970). 2234.Google Scholar
Rhew, R.C., Miller, B.R., Bill, M., Goldstein, A.H., and Weiss, R.F. Environmental and biological controls on methyl halide emissions from southern California coastal salt marshes. Biogeochemistry 60, (2002). 141161.Google Scholar
Riera, S., Wansard, G., and Juliá, R. 2000-year environmental history of a karstic lake in the Mediterranean Pre-Pyrenees: the Estanya lakes (Spain). Catena 55, (2004). 293324.CrossRefGoogle Scholar
Rodrigues, R., Brandão, C., and Costa, J. As cheias no Douro, ontem, hoje e amanhã. Ministério das Cidades, Ordenamento do território e Ambiente. (2003). Instituto da Água, Lisboa. (29 pp.)Google Scholar
Rodrigues, T., Grimalt, J.O., Abrantes, F.G., Flores, J.A., and Lebreiro, S.M. Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf (Tagus mud patch). Geochemistry, Geophysics, Geosystems 10, (2009). 117.Google Scholar
Saunders, J.B. Trochamminidae and certain Lituolidae (Foraminifera) from the recent brackish-water sediments of Trinidad, British West Indies. Smithsonian Miscellaneous Collection 134, 5 (1957). 123.Google Scholar
Scaffeta, N. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter–Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar — Terrestrial Physics 80, (2012). 296311.Google Scholar
Schellekens, J., Buurman, P., Fraga, I., and Martínez-Cortizas, A. Holocene vegetation and hydrologic changes inferred from molecular vegetation markers in peat, Penido Vello (Galicia, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 299, (2011). 5669.Google Scholar
Scott, D.B. Brackish-water foraminifera from Southern California and description of Polysaccammina ipohalina n. Gen., n. sp. Journal of Foraminiferal Research 6, 4 (1976). 312321.Google Scholar
Scott, D.B., and Medioli, F.S. Vertical zonations of marsh foraminifera as accurate indicators of former sea-levels. Nature 272, (1978). 528531.Google Scholar
Scott, D.B., and Medioli, F.S. Quantitative studies of marsh foraminiferal distributions in Nova Scotia: implications for sea level studies. Special Publication — Cushman Foundation for Foraminiferal Research 17, (1980). 58 Google Scholar
Scott, D.B., Medioli, F.S., and Schafer, C.T. Monitoring in Coastal Environments Using Foraminifera and Thecamoebian Indicators. (2001). Elsevier Inc., USA. (177 pp.)Google Scholar
Shindell, D.T., Schmidt, G.A., Mann, M.E., Rind, D., and Waple, A. Solar forcing of regional climate change during the Maunder Minimum. Science 294, (2001). 21492152.Google Scholar
Smith, J.N. Why should we believe 210Pb sediment geochronologies?. Journal of Environmental Radioactivity 55, (2001). 121123.Google Scholar
Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., and Wilhelms, F. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. PNAS 109, (2012). 59675971.Google Scholar
Stine, S. Extreme and persistent drought in California and Patagonia during Medieval Time. Nature 369, (1994). 546549.Google Scholar
Taborda, R., and Dias, J.M.A. Análise da sobre-elevação do nível do mar de origem meteorológica durante os temporais de 1978 e 1981. Geonovas, SI 1, (1991). 8997.Google Scholar
Trigo, R.M., Pozo-Vázquez, D., Osborn, T.J., Castro-Díez, Y., Gámis-Fortis, S., and Esteban-Parra, M.J. North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology 24, (2004). 925944.Google Scholar
Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., and Frank, D.C. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324, (2009). 7880.Google Scholar
Usoskin, I.G., Solanki, S.K., and Kovaltsov, G.A. Grand minima and maxima of solar activity: new observational constraints. Astronomy & Astrophysics 471, (2007). 301309.Google Scholar
Usoskin, I. A history of solar activity over millennia. Living Reviews in Solar Physics 10, (2013). 194. (URL accessed 25th November, 2013: http://www.livingreviews.org/lrsp-2013-1 ) Google Scholar
Valente, T., Fatela, F., Moreno, J., Moreno, F., Guise, L., and Patinha, C. A comparative study of the influence of geochemical parameters on the distribution of foraminiferal assemblages in two distinctive tidal marshes. Journal of Coastal Research, SI 56, (2009). 14391443.Google Scholar
Versteegh, G.J.M. Solar forcing of climate. 2: evidence from the past. Space Science Reviews 120, (2005). 243286.Google Scholar
Vicente-Serrano, S.M., and Cuadrat, J.M. North Atlantic oscillation control of droughts in north-east Spain: evaluation since 1600 A.D.. Climatic Change 85, (2007). 357379.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J., Küttel, M., Müller, S., Prentice, I., Solomina, O., Stocker, T., Tarasov, P., Wagner, M., and Widmann, M. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, (2008). 17911828.Google Scholar
Yamada, Y. Occurrence of bromine in plants and soil. Talanta 15, (1968). 11351141.Google Scholar
http://snirh.pt (18th June 2012) Google Scholar
http://drought.unl.edu (22th May 2013) Google Scholar
IPMA http://www.ipma.pt/pt/oclima/observatorio.secas/spi/apresentacao/evolu.historica/ (2013). (5th June 2013) Google Scholar
WDC and NOAA ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/solar_variability/steinhilber2009tsi.txt (2013). (25th November 2013) Google Scholar
Supplementary material: PDF

Moreno et al. supplementary material

Supplementary Material 1

Download Moreno et al. supplementary material(PDF)
PDF 37.7 KB
Supplementary material: PDF

Moreno et al. supplementary material

Supplementary Material 2

Download Moreno et al. supplementary material(PDF)
PDF 40 KB
Supplementary material: PDF

Moreno et al. supplementary material

Supplementary Material 3

Download Moreno et al. supplementary material(PDF)
PDF 34.3 KB
Supplementary material: PDF

Moreno et al. supplementary material

Supplementary Material 4

Download Moreno et al. supplementary material(PDF)
PDF 31.5 KB
Supplementary material: PDF

Moreno et al. supplementary material

Supplementary Material 5

Download Moreno et al. supplementary material(PDF)
PDF 38.8 KB
Supplementary material: PDF

Moreno et al. supplementary material

Supplementary Material 6

Download Moreno et al. supplementary material(PDF)
PDF 66.6 KB