Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T14:48:54.009Z Has data issue: false hasContentIssue false

Marine radiocarbon reservoir corrections (ΔR) for Chesapeake Bay and the Middle Atlantic Coast of North America

Published online by Cambridge University Press:  20 January 2017

Torben C. Rick*
Affiliation:
Program in Human Ecology and Archaeobiology, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013-7012, USA
Gregory A. Henkes
Affiliation:
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
Darrin L. Lowery
Affiliation:
Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington D.C. 20013-7012, USA
Steven M. Colman
Affiliation:
Large Lakes Observatory and Department of Geological Sciences, University of Minnesota Duluth, Duluth, MN 55812, USA
Brendan J. Culleton
Affiliation:
Department of Anthropology, University of Oregon, Eugene, OR 97403-1218, USA
*
*Corresponding author. E-mail address:[email protected] (T.C. Rick).

Abstract

Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (ΔR) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ΔR, ranging from 148±46 14C yr on the Potomac River to −109±38 14C yr at Swan Point, Maryland. The ΔR weighted mean for the Chesapeake's Western Shore (129±22 14C yr) is substantially higher than the Eastern Shore (−88±23 14C yr), with outer Atlantic Coast samples falling between these values (106±46 and 2±46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ΔR corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bevington, P.R., (1969). Data reduction and error analysis for the physical sciences. McGraw-Hill Inc., New York.Google Scholar
Bratton, J.F., Colman, S.M., Thieler, E.R., Seal II, R.R., (2003). Birth of the modern Chesapeake Bay estuary 7.4 and 8.2 ka and implications for global sea-level rise. Geo-Marine Letters 22, 188197.Google Scholar
Broecker, W.S., (1964). Radiocarbon dating: a case against the proposed link between river mollusks and soil humus. Science 143, 596597.Google Scholar
Broecker, W.S., Walton, A., (1959). The geochemistry of 14C in freshwater systems. Geochimica et Cosmochimica Acta 16, 1538.Google Scholar
Colman, S.M., Baucom, P.C., Bratton, J.F., Cronin, T.M., McGeehin, J.P., Willard, D., Zimmerman, A.R., Vogt, P.R., (2002). Radiocarbon dating, chronologic framework, and changes in accumulation rates of Holocene estuarine sediments from Chesapeake Bay. Quaternary Research 57, 5870.CrossRefGoogle Scholar
Cronin, T., Willard, D., Karlsen, A., Ishman, S., Verardo, S., McGeehin, J., Kerhin, R., Holmes, C., Zimmerman, A., (2000). Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments. Geology 20, 36.Google Scholar
Cronin, T.M., Thunnel, R., Dwyer, G.S., Saenger, C., Mann, M.E., Van, C., Seal II, R., (2005). Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America. Paleoceanography 20, PA4006 http://dx.doi.org/10.1029/2005PA001145Google Scholar
Cronin, T.M., Hayo, K., Thunnel, R.C., Dwyer, G.S., Saenger, C., Willard, D.A., (2010). The Medieval Climatic Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 293310.CrossRefGoogle Scholar
Culleton, B.J., (2006). Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California. Journal of Archaeological Science 33, 13311339.CrossRefGoogle Scholar
Culleton, B.J., Kennett, D.J., Ingram, B.L., Erlandson, J.M., Southon, J., (2006). Intra-shell radiocarbon variability in marine mollusks. Radiocarbon 48, 387400.CrossRefGoogle Scholar
Custer, J.F., (1989). Prehistoric cultures of the Delmarva Peninsula. University of Delaware Press, Newark.(446 pp).Google Scholar
Deo, J.N., Stone, J.O., Stein, J.K., (2004). Building confidence in marine shell: variation in the marine radiocarbon reservoir correction in the Pacific Northwest over the past 3,000 years. American Antiquity 69, 771786.CrossRefGoogle Scholar
Erlandson, J.M., Kennett, D.J., Ingram, B.L., Guthrie, D.A., Morris, D., Tveskov, M.A., West, G.J., Walker, P.L., (1996). An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38, 355373.CrossRefGoogle Scholar
Goodrich, D.M., Bulmberg, A.F., (1991). The fortnightly mean circulation of Chesapeake Bay. Estuarine, Coastal and Shelf Science 32, 41462.CrossRefGoogle Scholar
Harding, J.M., Spero, H.J., Mann, R., Herbert, G.S., Sliko, J.L., (2008). Reconstructing early 17th century estuarine drought conditions from Jamestown oysters. Proceedings of the National Academy of Sciences of the United States of America 107, 10,54910,554.Google Scholar
Hobbs, C.H., (2004). Geological history of Chesapeake Bay, U.S.A. Quaternary Science Reviews 23, 641661.Google Scholar
Hogg, A.G., Higham, T.F.G., Dahm, J., (1998). 14C dating of modern marine and estuarine shellfish. Radiocarbon 40, 974985.Google Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). Marine04 marine radiocarbon age calibration, 0–26 cal KYR BP. Radiocarbon 46, 10591086.CrossRefGoogle Scholar
Ingram, B.L., (1998). Differences in radiocarbon between shell and charcoal from a Holocene Shellmound in northern California. Quaternary Research 49, 102110.Google Scholar
Jones, K.B., Hodgins, G.W.L., Dettman, D.L., Andrus, C.F.T., Nelson, A., Etayo-Cadavid, M.F., (2007). Seasonal variations in Peruvian marine reservoir age from pre-bomb Argopecten purpuratus shell carbonate. Radiocarbon 49, 877888.Google Scholar
Keith, M.L., Anderson, G.M., (1963). Radiocarbon dating: fictitious results with mollusk shells. Science 141, 634637.CrossRefGoogle ScholarPubMed
Kennett, D.J., Ingram, B.L., Erlandson, J.M., Walker, P.L., (1997). Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, southern California. Journal of Archaeological Science 24, 10511059.Google Scholar
Kennett, D.J., Ingram, B.L., Southon, J., Wise, K., (2002). Differences in 14C age between stratigraphically associated charcoal and marine shell from the Archaic period site of Kilometer 4, southern Peru: old wood or old water?. Radiocarbon 44, 5358.Google Scholar
Lentz, S.J., Largier, J., (2006). The influence of wind forcing on the Chesapeake Bay buoyant coastal current. Journal of Physical Oceanography 36, 13051316.Google Scholar
Lewis, C.A., Reimer, P.J., Reimer, R.W., (2008). Marine reservoir corrections: St. Helena, South Atlantic Ocean. Radiocarbon 50, 275280.CrossRefGoogle Scholar
Little, E.A., (1993). Radiocarbon age calibration at archaeological sites of coastal Massachusetts and Vicinity. Journal of Archaeological Science 20, 457471.Google Scholar
Little, E.A., (1995). Apples and oranges: radiocarbon dates on shell and charcoal at Dogan Point. Claassen, C., Dogan Point: a shell matrix site in the lower Hudson Valley. Occassional Publications in Northeastern Anthropology 14, 121128.Google Scholar
McConnaughey, T.A., Burdett, J., Whelan, J.F., Paull, C.K., (1997). Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61, 611622.Google Scholar
McNeely, R., Dyke, A.S., Southon, J.R., (2006). Canadian marine reservoir ages, preliminary assessment. Geological Survey of Canada Open File 5049.Google Scholar
Moore, T.C., Rea jr., D.K., Godsey, H., (1998). Regional variation in modern radiocarbon ages and the hard-water effects in Lakes Michigan and Huron. Journal of Paleolimnology 20, 347351.CrossRefGoogle Scholar
Petchy, F., Anderson, A., Zondervan, A., Ulm, S., Hogg, A., (2008). New marine ΔR values for the south Pacific subtropical gyre region. Radiocarbon 50, 373397.CrossRefGoogle Scholar
Petchy, F., Allen, M.S., Addison, D.J., Anderson, A., (2009). Stability in the South Pacific surface marine 14C reservoir over the last 750 years. Evidence from American Samoa, the southern Cook Islands and the Marquesas. Journal of Archaeological Science 36, 22342243.Google Scholar
Pritchard, D.W., (1952). Salinity distribution and circulation in the Chesapeake Bay estuarine system. Journal of Marine Research 11, 106123.Google Scholar
Raymond, P.A., Bauer, J.E., (2001). DOC cycling in a temperate estuary: a mass balance approach using natural 14C and 13C isotopes. Limnology and Oceanography 46, 655667.CrossRefGoogle Scholar
Reimer, P.J., Reimer, R.W., (2001). A marine reservoir correction database and on-line interface. Radiocarbon 43, 461463.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 cal KYR BP. Radiocarbon 46, 10291058.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, G., Manning, S., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Schiffer, M.B., (1986). Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. Journal of Archaeological Science 13, 1330.CrossRefGoogle Scholar
Southworth, S., Brezinski, D.K., Orndorff, R.C., Repetski, J.E., Denenny, D.M., (2008). Geology of the Chesapeake and Ohio Canal National Historical Park and Potomac River corridor, District of Columbia, Maryland, West Virginia, and Virginia. U.S. Geological Survey Professional Paper 1691, 144 pp., 1 pl. (Available online athttp://pubs.usgs.gov/pp/1691/.Google Scholar
Spiker, E.C., (1980). The behavior of 14C and 13C in estuarine water: effects of in situ production and atmospheric exchange. Radiocarbon 22, 647654.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and Revised Calib 3.0 14C age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stuiver, M., Pearson, G.W., Braziunas, T.F., (1986). Radiocarbon calibration of marine samples back to 9000 CAL YR BP. Radiocarbon 28, 9801021.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Braziunas, T.F., (1998). High precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, 11271151.Google Scholar
Swain, F.M., Palacas, J.G., Kraft, J.C., (1966). High-calcium limestone deposits of Cumberland Valley, Pennsylvania. Ohio Journal of Science 66, 116123.Google Scholar
Taylor, R.E., (1987). Radiocarbon dating: an archaeological perspective. Academic Press, Orlando.Google Scholar
Thomas, D.H., (2008). Chapter 13. Radiocarbon dating on St. Catherine's Island. In: Native American landscapes of St. Catherines Island, Georgia II. The data. American Museum of Natural History, Anthropological Papers, Number 88 345371.Google Scholar
Ulm, S., (2002). Marine and estuarine reservoir effects in central Queensland, Australia: determination of ΔR values. Geoarchaeology 17, 319348.Google Scholar
Ulm, S., (2009). Australian marine reservoir effects: a guide to ΔR values. Australian Archaeology 63, 5760.CrossRefGoogle Scholar
USGS, . (2010). USGS Chesapeake Bay River Input Monitoring Program. http://va.water.usgs.gov/chesbay/RIMP/generalinfo.html.Google Scholar
Wah, J.S., (2003). The origin and pedogenic history of Quaternary Silts on the Delmarva Peninsula in Maryland. PhD dissertation, University of Maryland.Google Scholar
Ward, L.W., Andrews, G.W., (2008). Stratigraphy of the Calvert, Choptank, and St. Marys Formation (Miocene) in the Chesapeake Bay area, Maryland and Virginia. Virginia Museum of Natural History Memoir 9, 160.Google Scholar
Ward, G.K., Wilson, S.R., (1978). Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20, 1931.Google Scholar
Willard, D.A., Bernhardt, C.E., Korejwo, D.A., Meyers, S.R., (2005). Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: pollen-based climatic reconstruction. Global and Planetary Change 47, 1735.CrossRefGoogle Scholar