Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T09:14:57.939Z Has data issue: false hasContentIssue false

Luminescence Dating of Sediments from the Luthern Valley, Central Switzerland, and Implications for the Chronology of the Last Glacial Cycle

Published online by Cambridge University Press:  20 January 2017

Frank Preusser
Affiliation:
Geologisches Institut, Universität zu Köln, Zülpicher Strasse 49 a, D-50674 Cologne, Germany; and Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland
Benjamin U. Müller
Affiliation:
Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland
Christian Schlüchter
Affiliation:
Geologisches Institut, Universität Bern, Baltzerstrasse 1, CH-3012 Bern, Switzerland

Abstract

The advancing glaciers of the last glacial maximum either eroded or deeply buried older sediments in the Swiss Alpine Foreland. However, part of the Swiss Plateau was not covered by ice and is therefore an excellent area for investigating climate and environmental change during the Upper Pleistocene. Repeated fluvial sequences can be studied in several pits along the Luthern Valley. The chronological framework is based on lithostratigraphy, pollen analysis, U/Th dating, and recently, heavy mineral analysis and luminescence dating. The oldest unit, the Untere Zeller Schotter braided river deposit, represents cold climate conditions and presumably a glaciation prior to the Eemian Interglaciation. The last interglacial period and the very beginning of the last glacial cycle is represented by the Mittlere Zeller Schotter, sediments of a meandering fluvial system. Younger braided river sediments, the Obere Zeller Schotter, seem to correlate with the cold climate of oxygen isotope stage (OIS) 4. Weathering of the top of the Obere Zeller Schotter is likely to represent the OIS 3. The advancing Reuss glacier caused erosion of the recent Luthern Valley, cutting into older sediments, with local loess accumulation during the last glacial maximum as indicated by cover sediments on top of the fluvial sequence.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J., (1998). An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford Univ. Press, Oxford.CrossRefGoogle Scholar
Aitken, M.J., Xie, J., (1992). Optical dating using infrared diodes: Young samples. Quaternary Science Reviews 11, 147152.CrossRefGoogle Scholar
Balescu, S., Lamothe, M., Lautridou, J.-P., (1997). Luminescence evidence for two Middle Pleistocene interglacial events at Tourville, northwestern France. Boreas 26, 6172.CrossRefGoogle Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., (1994). The astronomical theory of climate and the age of the Brunhes—Matuyama magnetic reversal. Earth and Planetary Science Letters 126, 91108.CrossRefGoogle Scholar
Bøtter-Jensen, L., Mejdahl, V., (1988). Assessment of beta dose-rate using a GM multicounter system. Nuclear Tracks and Radiation Measurements 14, 187191.CrossRefGoogle Scholar
Ditlefsen, C., (1992). Bleaching of K-feldspar in turbid water suspensions: A comparison of photo- and thermoluminescence signals. Quaternary Science Reviews 11, 3338.CrossRefGoogle Scholar
Duller, G.A.T., (1994). Luminescence dating using feldspars: A test case from southern North Island, New Zealand. Quaternary Geochronology (Quaternary Science Reviews) 13, 423427.CrossRefGoogle Scholar
Frechen, M., Preusser, F., (1996). Kombinierte Lumineszenz-Datierungen am Beispiel des Lößprofils Mainz-Weisenau. Frankfurter Geowissen- schaftliche Arbeiten Serie D 20, 5366.Google Scholar
Frechen, M., Schweitzer, U., Zander, A., (1996). Improvements in sample preparation for the fine grain technique. Ancient TL 14, 1517.Google Scholar
Frey, O., (1907). Talbildung und glaziale Ablagerungen zwischen Emme und Reuss. Denkschrift der Schweizer Naturforschenden Gesellschaft 41, 341525.Google Scholar
Gerber, M. E, and Wanner, J. (1984)., Erläuterungen zum Blatt 1128 Langenthal . Geologischer Atlas der Schweiz 1: 25000.Google Scholar
Geyh, M.A., Schlüchter, C., (1998). Zur Kalibration der 14C-Zeitskala vor 22.000 Jahren v.h. GeoArchaeoRhein 2, 139149.Google Scholar
Godfrey-Smith, D.I., Huntley, D.J., Chen, W.-H., (1988). Optical dating studies of quartz and feldspar sediment extracts. Quaternary Science Reviews 7, 373380.CrossRefGoogle Scholar
Hantke, R. (1980). Eiszeitalter, Band. 2, 371384, Ott Verlag Thun.Google Scholar
Huntley, D.J., Baril, M.R., (1997). The K content of the K-feldspars being measured in optical and thermoluminescence dating. Ancient TL 15, 1113.Google Scholar
Keller, O., Krayss, E., (1998). Datenlage und Modell einer Rhein-Linth-Vorlandver gletscherung zwischen Eem-Interglazial und Hochwürm. GeoArchaeoRhein 2, 121138.Google Scholar
Kronborg, C., Mejdahl, V., (1989). Thermoluminescence dating of Eemian and Early Weichselian deposits in Denmark. Quaternary International 3/4, 9399.CrossRefGoogle Scholar
Küttel, M., (1989). Züge der jungpleistozänen Vegetations- und Landschaftsgeschichte der Zentralschweiz. Revue de Paléobiologie 8, 525614.Google Scholar
Küttel, M., (1989). Jungpleistozän-Stratigraphie der Zentralschweiz. Rose, J., Schlüchter, C. Quaternary Type Sections: Imagination or Reality? Balkema, Rotterdam.179191.Google Scholar
Matter, A., (1964). Sedimentologische Untersuchungen im östlichen Napfgebiet. Eclogae Geologicae Helvetiae 57, 315426.Google Scholar
Mejdahl, V., (1988). Long-term stability of the TL signal in alkali feldspars. Quaternary Science Reviews 7, 357360.CrossRefGoogle Scholar
Müller, B., Schlüchter, C., (1997). Zur Stellung der Zeller Schotter in der alpinen Eiszeiten-Chronologie und ihre stratigraphische Beziehung zu den Schieferkohlen von Gondiswil. Eclogae Geologicae Helvetiae 90, 211227.Google Scholar
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Prescott, J.R., Robertson, G.B., (1997). Sediment dating by luminescence: A review. Radiation Measurements 27, 893922.CrossRefGoogle Scholar
Preusser, F., (1999). Lumineszenzdatierung fluviatiler Sedimenter–Fallbeispiele aus der Schweiz und Norddeutschland. Kölner Forum Geologie & Paläontolgie 3, 162.Google Scholar
Preusser, F., (1999). Luminescence dating of fluvial sediments and overbank deposits from Gossau, Switzerland: Fine grain dating. Quaternary Geochronology (Quaternary Science Reviews) 18, 217222.CrossRefGoogle Scholar
Preusser, F., Frechen, M., (1999). Chronostratigraphie der oberweichselzeitlichen Lössabfolge von Ockenfels, Mittelrhein. Becker-Haumann, R., Frechen, M. Terrestrische Quartärgeologie Loga Book, Cologne.6880.Google Scholar
Rutsch, R.F., (1967). Leitgesteine des risszeitlichen Rhonegletschers im Oberemmenthal und Napfgebiet (BE und LU). Mitteilungen der Naturforschenden Gesellschaft in Bern 24, .Google Scholar
Schlüchter, C., (1987). Lokale Vergletscherung im westlichen Ausläufer des Napfberglandes (Schweiz). Eiszeitalter und Gegenwart 37, 4145.Google Scholar
Schlüchter, C., (1991). Fazies und Chronologie des letzteiszeitlichen Eisaufbaus im Alpenvorland der Schweiz. Frenzel, B. Klimageschichtliche Probleme der letzten 130 000 Jahre Fisher, Stuttgart/New York.401407.Google Scholar
Schlüchter, C., Maisch, M., Suter, J., Fitze, P., Keller, W.A., Burga, C.A., Wynistorf, E., (1987). Das Schieferkohlen-Profil von Gossau (Kanton Zürich) und seine stratigraphische Stellung innerhalb der letzten Eiszeit. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 132, 135174.Google Scholar
Wegmüller, S., (1985). Vegetationsgeschichtliche Untersuchungen im Schieferkohlengebiet von Gondiswil/Ufhusen. Jahrbuch des Oberaargaus 1985, 1330.Google Scholar
Wegmüller, S., (1992). Vegetationsgeschichtliche und stratigraphische Untersuchungen an Schieferkohlen des nördlichen Alpenvorlandes. Denkschrift der Schweizer Akademie der Naturwissenschaften 102, 182.Google Scholar
Welten, M., (1988). Neue pollenanalystische Ergebnisse über das Jüngere Quartär des nördlichen Alpenvorlandes der Schweiz. Beiträge zur geologischen Karte der Schweiz (Neue Folge) 156, 140.Google Scholar
Wintle, A.G., (1994). Infrared-stimulated luminescence dating of sediments. Radiation Measurements 23, 607612.CrossRefGoogle Scholar