Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T01:17:25.643Z Has data issue: false hasContentIssue false

Long-term talus flatirons formation in the hyperarid northeastern Negev, Israel

Published online by Cambridge University Press:  20 January 2017

Ronen Boroda*
Affiliation:
Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel Department of Geological and Environmental Sciences, Ben-Gurion University, Beer Sheva 84105, Israel
Ari Matmon
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem 91904, Israel
Rivka Amit
Affiliation:
Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel
Itai Haviv
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University, Beer Sheva 84105, Israel
Naomi Porat
Affiliation:
Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel
Dylan Rood
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Yehuda Eyal
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University, Beer Sheva 84105, Israel
Yehuda Enzel
Affiliation:
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem 91904, Israel
ASTERTeam
Affiliation:
M. Arnold, G. Aumaître, D. Bourlès, K. Keddadouche, CEREGE, UMR 6635 CNRS- Aix-Marseille University, BP 80, 13 545 Aix en Provence Cedex 4, France
*
*Corresponding author at: Department of Geological and Environmental Sciences, Ben-Gurion University, Beer Sheva 84105, Israel. E-mail address:[email protected] (R. Boroda).

Abstract

Colluvial sediments of talus relicts (“talus flatirons”) around mesas preserve a record that sheds light on slope-forming processes at temporal scales > 103 yr. The sedimentology and soil stratigraphy of two groups of talus flatirons in the northeastern hyperarid Negev desert reveal four deposition events in the younger talus and at least two in the older one. Numerical modeling of high-resolution 10Be depth profiles suggests that these taluses were deposited during the middle Pleistocene; the younger talus group first depositional event occurred at 551 − 142+ 80 ka and its abandonment occurred at 270 − 38+ 17 ka. The abandonment of the older talus group and stabilization of its surface occurred at 497 − 114+ 176 ka. These ages indicate that the development of the studied talus sequence is not specifically associated with Pleistocene glacial–interglacial cycles. The 10Be modeled concentrations indicate significant differences in the average inheritance of talus flatirons of different groups. These differences can be attributed to variability in the transport distance and duration of gravel exposure during transport but could also reflect some temporal variability in cliff retreat. Our results also demonstrate that talus slopes in hyperarid areas, despite their steepness, can store sediment for long periods (~ 500 ka) and thus constitute a valuable archive.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J. An Introduction to Optical Dating. (1998). Oxford University Press, Oxford.CrossRefGoogle Scholar
Amit, R., and Gerson, R. The evolution of Holocene Reg (gravelly) soils in deserts – An example from the Dead Sea region. Catena 13, (1986). 5979.CrossRefGoogle Scholar
Amit, R., Gerson, R., and Yaalon, D.H. Stages and rate of gravel shattering process by salts in desert Reg soils. Geoderma 57, (1993). 295324.CrossRefGoogle Scholar
Amit, R., and Yaalon, D.H. Micromorphology of gypsum and halite in Reg soils—The Negev Desert, Israel. Earth Surface Processes and Landforms 21, (1996). 11271143.3.0.CO;2-G>CrossRefGoogle Scholar
Amit, R., Enzel, Y., and Sharon, D. Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems. Geology 34, (2006). 509512.CrossRefGoogle Scholar
Amit, R., Enzel, Y., Grodek, T., Couvi, O., Porat, N., and Ayalon, A. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quaternary Research 74, (2010). 177187.CrossRefGoogle Scholar
Anders, M.D., Pederson, J.L., Rittenour, T.M., Sharp, W.D. et al. Pleistocene geomorphology and geochronology of eastern Grand Canyon: linkages of landscape components during climate changes. Quaternary Science Review 24, (2005). 24282448.CrossRefGoogle Scholar
Anderson, R.S., Repka, J.L., and Dick, G.S. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology 59, (1996). 4751.2.3.CO;2>CrossRefGoogle Scholar
Arauzo, T., Gutiérrez, M., and Sancho, C. Facetas triangulares de ladera como indicadores paleoclimàticos en ambientes semi'aridos Depresión del Ebro. Geogaceta 20, (1996). 10931095.Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, (2008). 174195.CrossRefGoogle Scholar
Bevington, P.R., and Robinson, D.K. Data Reduction and Error Analysis for the Physical Sciences. 3rd ed. (2003). McGraw-Hill, Boston.Google Scholar
Bierman, P.R., and Turner, J. 10Be and 26Al evidence for exceptionally low rates of Australian bedrock erosion and the likely existence of pre-Pleistocene landscapes. Quaternary Research 44, (1995). 378382.CrossRefGoogle Scholar
Bierman, P.R., and Caffee, M. Steady state rates of rock surface erosion and sediment production across the hyper-arid Namib Desert and the Namibian escarpment, Southern Africa. American Journal of Science 301, (2001). 326358.CrossRefGoogle Scholar
Birkeland, P.W. Soils and Geomorphology. (1999). Oxford University Press, Oxford.Google Scholar
Boroda, R., Amit, R., Matmon, A., Team, A.S.T.E.R., Finkel, R., Porat, N., Enzel, Y., and Eyal, Y. Quaternary-scale evolution of sequences of talus flatirons in the hyperarid Negev. Geomorphology 127, (2011). 4152.CrossRefGoogle Scholar
Braucher, R., Del C, P., Siame, L., Hidy, A.J., and Bourles, D.L. Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quaternary Geochronology 4, (2009). 5667.CrossRefGoogle Scholar
Brocard, G.Y., van der Beek, P.A., Bourles, D.L., Siame, L.L., and Mugnier, J.L. Long-term flivial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth and Planetary Science Letters 209, (2003). 197214.CrossRefGoogle Scholar
Brown, E.T., Bourles, D.L., Burchfiel, B.C., Qidong, D., Jun, L., Molnar, P., Raisbeck, G.M., and Yiou, F. Estimation of slip rates in the southern Tien-Shan using cosmic ray exposure dates of abandoned alluvial surfaces. Geological Society of America Bulletin 110, (1998). 377386.2.3.CO;2>CrossRefGoogle Scholar
Bull, W.B. Geomorphic Response to Climatic Change. (1991). Oxford University Press, Oxford.Google Scholar
Carson, M.A., and Kirkby, M.J. Hillslope Form and Process. (1972). Elsevier Inc., Cambridge.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N., and Sandler, A. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70, (2008). 275282.CrossRefGoogle Scholar
Crouvi, O., Amit, R., Porat, N., Gillespie, A.R., McDonald, E.V., and Enzel, Y. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates, and sources; an example from the Negev Desert, Israel. Journal of Geophysical Research- Earth Surface 114, (2009). F02017 CrossRefGoogle Scholar
Dan, J., and Yaalon, D.H. Automorphic saline soils in Israel. Yaalon, D.H. Aridic Soils and Geomorphic Processes. Catena Supplement 1, (1982). 103115. (Reiskirchen) Google Scholar
Dan, J., Raz, Z., and Koyumdjisky, H. Soil Survey Manual: Division of Scientific Publication. (1964). The Volcani Center, Bet Dagan, Israel. (in Hebrew) Google Scholar
Dorn, R. Cation-ratio dating: a new rock varnish age determination technique. Quaternary Research 20, (1983). 4973.CrossRefGoogle Scholar
Douglas, G.R., Whalley, W.B., and McGreevy, J.P. Rock properties as controls on free-face debris fall activity. Permafrost and Periglacial Processes 2, (1991). 311319.CrossRefGoogle Scholar
Enzel, Y., Amit, R., Grodek, T., Ayalon, A., Lekach, J., Porat, N., Bierman, P., Blum, J.D., and Erel, Y. Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: An “impact of climatic change on an arid watershed”?. Geological Society of America Bulletin 124, (2012). 705722.CrossRefGoogle Scholar
Everard, C.E. Contrasts in the form and evolution of hill-side slopes in central Cyprus. Transactions of the Institute of British Geographers 32, (1963). 331347.Google Scholar
Gerson, R. Talus relicts in deserts: a key to major climatic fluctuations. Israel Journal of Earth Science 31, (1982). 123132.Google Scholar
Gerson, R., and Grossman, S. Geomorphic activity on escarpment and associated fluvial systems in hot deserts as an indicator of environmental regimes and eyclic climatic changes. Rarmpino, M.R., Sanders, J.E., Newman, W.S., and Koningsson, L.K. Climate: History, Periodicity, Predictability. (1987). Van Nostrand Reinhold, Stroudsburg, PA. 301322.Google Scholar
Gosse, J.C., and Phillips, F.M. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, (2001). 14751560.CrossRefGoogle Scholar
Granger, D.E., and Muzikar, P.F. Dating sediment burial with in situ-produced cosmogenic nuclides; theory, techniques, and limitations. Earth and Planetary Science Letters 188, (2001). 269281.CrossRefGoogle Scholar
Granger, D.E., and Smith, A.L. Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be. Nuclear Instruments and Methods in Physics Research 172, (2000). 822826.CrossRefGoogle Scholar
Granger, D.E., Kirchner, J., and Finkel, R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. Journal of Geology 104, (1996). 249257.CrossRefGoogle Scholar
Guralnik, B., Matmon, A., Avni, Y., and Fink, D. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting. Earth and Planetary Science Letters 290, (2010). 132141.CrossRefGoogle Scholar
Gutiérrez, M., and Martinez, V.H. Multiple talus flatirons, variation of cliff retreat rates and the evolution of slopes in Almazan Basin (semi-arid central Spain). Geomorphology 38, (2001). 1929.CrossRefGoogle Scholar
Gutiérrez, M., Sancho, C., and Arauzo, T. Cliff retreat rates in semiarid environments from talus flatirons, Ebro Basin, NE Spain. Geomorphology 25, (1998). 111121.CrossRefGoogle Scholar
Gutiérrez, M., Gutiérrez, F., and Desir, G. Considerations on the chronological and causal relationships between talus flatirons and palaeoclimatic changes in central and northeastern Spain. Geomorphology 73, (2006). 5063.CrossRefGoogle Scholar
Hancock, G., Anderson, R., Chadwick, O., and Finkel, R. Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming. Geomorphology 27, (1999). 4160.CrossRefGoogle Scholar
Haviv, I., Enzel, Y., Whipple, K.X., Zilberman, E., Matmon, A., Stone, J., and Fifield, K.L. Evolution of vertical knickpoints (waterfalls) with resistant caprock; insights from numerical modeling. Journal of Geophysical Research 115, (2010). F3 CrossRefGoogle Scholar
Hidy, A., Gosse, J., Pederson, J., Mattern, P., and Finkel, R. A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochemistry, Geophysics, Geosystems 11, (2010). CrossRefGoogle Scholar
Howard, A.D., and Selby, M.J. Rock slopes. Abrahams, A.D., and Parsons, A.J. Geomorphology of Desert Environments. (1994). Chapman & Hall, London. 123172.Google Scholar
Koons, D. Cliff retreat in the southwestern United States. American Journal of Science 253, (1955). 4452.CrossRefGoogle Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., R7ugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, Ch. Lierse, Kossert, K., Maitia, M., Poutivtsev, M., and Remmert, A. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 286, (2010). 187191.CrossRefGoogle Scholar
Lal, D., and Arnold, J. Tracing quartz through the environment: proceeding of Indian Academic Science. Earth and Planetary Science Letters 94, (1985). 15.Google Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: In situ production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.CrossRefGoogle Scholar
Matmon, A., Simhai, O., Amit, R., Haviv, I., Enzel, Y., Porat, N., McDonald, E.V., Benedetti, L., and Finkel, R.C. Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth. Geological Society of America Bulletin 121, (2009). 688697.CrossRefGoogle Scholar
Matsushi, Y., Wakasa, S., Matsuzaki, H., and Matsukura, Y. Long-term denudation rates of actively uplifting hillcrests in the Boso Peninsula, Japan, estimated from depth profiling of in situ-produced cosmogenic 10Be and 26Al. Geomorphology 82, (2006). 283294.CrossRefGoogle Scholar
Murray, A.S., and Wintle, A.G. Luminescence dating of quartz using improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, (2000). 5773.CrossRefGoogle Scholar
Nichols, K.K., Bierman, P.R., Hooke, R.L., Clapp, E.M., and Caffee, M. Quantifying sediment transport on desert piedmonts using 10Be and 26Al. Geomorphology 45, (2002). 105125.CrossRefGoogle Scholar
Nichols, K., Bierman, P., Eppes, M., Caffee, M., Finkel, R., and Larsen, J. Deciphering the Late Pleistocene and Holocene history of the complex Chemehuevi Mountain piedmont using 10Be and 26Al. American Journal of Science 305, (2005). 345368.CrossRefGoogle Scholar
Nichols, K., Bierman, P., Foniri, W., Gillespie, A., Caffee, M., and Finkel, R. Dates and rates of arid region geomorphic processes. GSA Today 16, (2006). 411.CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., and McAninch, J. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258, (2007). 403413.CrossRefGoogle Scholar
Pederson, J.L., Smith, G., and Pazzaglia, F. Comparing the modern, Quaternary, and Neogene records of climate controlled hillslope sedimentation in southeast Nevada. Geological Society of America Bulletin 113, (2001). 305319.2.0.CO;2>CrossRefGoogle Scholar
Perg, L.A., Anderson, R.S., and Finkel, R.C. Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA. Geology 29, (2001). 879882.2.0.CO;2>CrossRefGoogle Scholar
Phillips, M.P., McDonald, E.V., Reneau, S.L., and Poths, J. Dating soils and alluvium with cosmogenic 21Ne depth profiles: case studies from the Pajarito Plateau, New Mexico, USA. Earth and Planetary Science Letters 160, (1998). 209223.CrossRefGoogle Scholar
Porat, N. (TR-GSI/2/2002) Analytical Procedures in the Luminescence Dating Laboratory. (2007). Geological Society of Israel, Jerusalem, Israel. 33 (in Hebrew) Google Scholar
Riihimaki, C.A., Anderson, R.S., Safran, E.B., Dethier, D.P., Finkel, R.C., and Bierman, P.R. Longevity and progressive abandonment of the Rocky Flats surface, Front Range, Colorado. Geomorphology 78, (2006). 265278.CrossRefGoogle Scholar
Sancho, C., Gutiérrez, M., Pene, J.L., and Burillo, F. A quantitative approach to cliff retreat starting from triangular slope facets, central Ebro Basin, Spain. Catena Supplement 13, (1988). 139146.Google Scholar
Schmidt, K.H. Hillslopes as evidence of climate change. Abrahams, A.D., and Parsons, A.J. Geomorphology of Desert Environments. (1994). Chapman & Hall, London, UK. 553570.Google Scholar
Schmidt, K.H. Talus and pediment flatirons-indicators of climatic change on cliff slope on the Colorado Plateau, USA. Zeitschrift fur Geomorphology 103, (1996). 135158.Google Scholar
Shaw, S.H., (1947). Geological Map of Southern Palestine, with explanatory notes: Jerusalem, Govt. of Palestine. 42 pp.Google Scholar
Small, E.E., Anderson, R.S., and Hancock, G.S. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 27, (1999). 131150.CrossRefGoogle Scholar
Soil Survey Staff Soil taxonomy. Agriculture Handbook. (1975). U.S Department of Agriculture, Soil Conservation Service, Google Scholar
Stone, J. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, (2000). 23,753759.CrossRefGoogle Scholar
Yair, A., and Lavee, H. Runoff generation in arid and semi-arid zones. Anderson, M.G. Hydrological Forecasting. (1985). John Wiley and Sons, New York. 183220.Google Scholar