Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T10:08:46.425Z Has data issue: false hasContentIssue false

Late-Glacial History of Lago Argentino, Argentina, and Age of the Puerto Bandera Moraines

Published online by Cambridge University Press:  20 January 2017

Jorge A. Strelin
Affiliation:
Centro Austral de Investigaciones Cientı́ficas (CADIC–CONICET), Av. Malvinas Argentinas S/N° 9410, Ushuaia, Tierra del Fuego, Argentina, E-mail: [email protected]
Eduardo C. Malagnino
Affiliation:
Centro de Investigaciones en Recursos Geológicos (CIRGEO–CONICET), Juan Ramı́rez de Velasco 847, 1414, Ciudad de Buenos Aires, Argentina, E-mail: [email protected]

Abstract

In the west-central part of Lago Argentino, the Puerto Bandera moraines are clearly detached from longer, more prominent moraines of the last glaciation and from shorter and smaller Neoglacial moraines. Scientists have long speculated about the age of the Puerto Bandera moraines. Detailed geomorphologic studies in the western area of Lago Argentino, including stratigraphic profiles at Bahı́a del Quemado in the northern branch (Brazo Norte), indicate that the Puerto Bandera moraines were deposited by three pulses of ice. Each of the three pulses is represented by single moraine ridges and belts of tightly arranged ridges. The timing of the three glacier advances was established by radiocarbon dating, including data published by John Mercer. The oldest moraine system, formed during the Puerto Bandera I substade, was deposited ca. 13,000 14C yr B.P. Moraines of the Puerto Bandera II substade were deposited ca. 11,000 14C yr B.P. The youngest moraine system was deposited during a minor readvance, shortly before 10,390 C14 yr B.P., and thus appears to have occurred some time during the European Younger Dryas interval. After this third substade, the ice tongues retreated into the interior branches of Lago Argentino and have remained there since. Evidence found at Bahı́a del Quemado, together with data provided by other authors, attests to a significant climatic change by the middle Holocene, which we believe occurred during the Herminita advance, the first Holocene glacial readvance recognized within the area.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auer, V. (1956). The Pleistocene of Fuego-Patagonia, part I: Ice and interglacial ages. Annales Academie Scientiarum Fennicae, Series A III. Geologica-Geographica, 45, 226 Google Scholar
Auer, V. (1958). The Pleistocene of Fuego-Patagonia. Part II. The history of the flora and vegetation. Annales Academiae Scientiarum Fennicae III. Geologica-Geographica, 50, 239 Google Scholar
Auer, V. (1965). The Pleistocene of Fuego-Patagonia, part IV: Bog profiles. Annales Academie Scientiarum Fennicae, Series A III. Geologica-Geographica, 80, 60 Google Scholar
Caldenius, C.. Las glaciaciones cuaternarias en la Patagonia y Tierra del Fuego. Ministerio de Agricultura, Dirección General de Minas y Geologı́a, 95, (1932). 150 Google Scholar
Clapperton, C.M. (1983). The glaciation of the Andes. Quaternary Science Reviews, 2, 83155.CrossRefGoogle Scholar
Clapperton, C.M.. (1993). Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam.p. 779Google Scholar
Coronato, A. (1990). Definición y alcance de la última glaciación pleistocena (Glaciación Moat) en el Valle de Andorra, Tierra del Fuego. XI Congreso Geológico Argentino Actas, 1, 286289.Google Scholar
Denton, G.H., Lowell, T.V., Heusser, C.J., Schlüchter, C., Andersen, B.G., Heusser, L.H., Moreno, P.I., Marchant, D.R. (1999). Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue drift in the area of the Southern Lake District, Seno Reloncavı́, and Isla Grande de Chiloé, Chile. Geografiska Annaler, 81 A, 167229.CrossRefGoogle Scholar
Feruglio, E. (1944). Estudios geológicos y glaciológicos en la región del Lago Argentino (Patagonia). Boletı́n Academia Nacional de Ciencias, Córdoba, Argentina, 37, 1208.Google Scholar
Feruglio, E.. (1950). Descripción geológica de la Patagonia. Yacimientos Petrolı́feros Fiscales, YPF, Buenos Aires 3.p. 431Google Scholar
Heusser, C.J. (1984). Late-glacial–Holocene climate of the Lake District of Chile. Quaternary Research, 22, 7790.Google Scholar
Heusser, C.J. (1989). Climate and chronology of Antarctica and adjacent South America over the past 30,000 yr. Paleogeography, Paleoclimatology, Paleoecology, 76, 3137.CrossRefGoogle Scholar
Heusser, C.J., Streeter, S. (1980). A temperature and precipitation record of the past 16,000 years in Southern Chile. Science, 210, 13451347.Google Scholar
Heusser, C.J, Streeter, S.S., Stuiver, M. (1981). Temperature and precipitation record in southern Chile extended to 43,000 yr ago. Nature, 294, 6567.CrossRefGoogle Scholar
Hoganson, J.W., Ashworth, A.C. (1992). Fossil beetle evidence for climatic change 18,000–10,000 years B.P. in south-central Chile. Quaternary Research, 37, 101116.Google Scholar
Malagnino, E.C., Strelin, J.A.. Variations of Upsala Glacier in southern Patagonia since the late Holocene to the present. (1992). Naruse, R., Aniya, M.. Glaciological Researches in Patagonia, 1990. 6185.Google Scholar
Malagnino, E.C., Strelin, J.A. (1996). Oscilaciones del englazamiento en el brazo Norte del lago Argentino y penı́nsula Herminita desde el Holoceno Tardı́o hasta la actualidad. XIII Congreso Geológico Argentino, 4, 289 Google Scholar
Marden, C.J., Clapperton, Ch.M. (1995). Fluctuations of the South Patagonian ice-field during the last glaciation and the Holocene. Journal of Quaternary Science, 10, 197210.CrossRefGoogle Scholar
Markgraf, V. (1989). Paleoclimates in Central and South America since 18,000 BP based on pollen and lake sediments. Quaternary Science Reviews, 8, 124.Google Scholar
Markgraf, V. (1991). Late Pleistocene environmental and climatic evolution in southern South America. Bamberger Geographica Schriften, 11, 271281.Google Scholar
Mercer, J.H. (1968). Variations of some Patagonian glaciers since the late glacial: I. American Journal of Science, 266, 91109.CrossRefGoogle Scholar
Mercer, J.H. (1969). Glaciation in Southern Argentina more than two million years ago. Science, 164, 823825.Google Scholar
Mercer, J.H. (1970). Variations of some Patagonian glaciers since the late glacial: II. American Journal of Science, 269, 125.Google Scholar
Mercer, J.H. (1972). Chilean glacial chronology 20,000–11,000 carbon-14 years ago: Some global comparisons. Science, 176, 11181120.Google Scholar
Mercer, J.H. (1976). Glacial history of southernmost South America. Quaternary Research, 6, 125166.CrossRefGoogle Scholar
Mercer, J.H. (1982). Holocene glacier variation in southern South America. Striae, 18, 3540.Google Scholar
Porter, S. (1981). Pleistocene glaciation in the southern Lake District of Chile. Quaternary Research, 16, 263292.Google Scholar
Rabassa, J., Clapperton, C.M. (1990). Quaternary glaciations of the Southern Andes. Quaternary Science Reviews, 9, 153174.CrossRefGoogle Scholar
Rabassa, J., Serrat, D., Marti, C., Coronato, A. (1990). El Tardiglacial en el Canal Beagle, Tierra del Fuego, Argentina. XI Congreso Geológico Argentino, 1, 290293.Google Scholar
Riccardi, A.C. (1971). Estratigrafı́a en el Oriente de la Bahı́a de la Lancha, lago San Martı́n, Santa Cruz, Argentina. Revista del Museo de La Plata, 7, 245318.Google Scholar
Strelin, J. A. (1996). Estratigrafı́a glaciar del sur de Santa Cruz y Tierra del Fuego.Beca para Investigadores Formados,Informe Final, CONICET, , 119, pp.Google Scholar
Strelin, J.A., Malagnino, E.C. (1996). Glaciaciones Pleistocenas de Lago Argentino y Alto Valle del Rı́o Santa Cruz. XIII Congreso Geológico Argentino, 4, 311325.Google Scholar
Wenzens, G., and Wenzens, E, (1998). Late glacial and Holocene glacier advances in the area of Lago Viedma (Patagonia, Argentina). Zentralblatt Geologie und Paläontologie Palaont.Teil I 1997, 593608.Google Scholar