Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T03:15:05.834Z Has data issue: false hasContentIssue false

Late Quaternary Biomass Changes from 13C Measurements in a Highland Peatbog from Equatorial Africa (Burundi)

Published online by Cambridge University Press:  20 January 2017

Anne-Marie Aucour
Affiliation:
Centre de recherche en Géochimie isotopique et en Géochronologie (GEOTOP), Université du Québec à Montreal, BP 8888, Succ. A, H3C 3P8, Montreal, Canada
Claude Hillaire-Marcel
Affiliation:
Centre de recherche en Géochimie isotopique et en Géochronologie (GEOTOP), Université du Québec à Montreal, BP 8888, Succ. A, H3C 3P8, Montreal, Canada
Raymonde Bonnefille
Affiliation:
Laboratoire de Géologie du Quaternaire, CNRS, Luminy, Case 907, 13288 Marseille Cédex 9, France

Abstract

Stable carbon isotope ratios of total organic matter were measured in two cores collected from the Kashiru peatbog in Burundi, Equatorial Africa. The record, which spans at least the last 40,000 yr, documents the C3-C4 biomass balance in the organic sediment. Among the major modern peat formers, most plants are C3 species and are characterized by δ13C values of -25.5 ± 2.3% (vs PDB). The C4 plants, which are characterized by higher δ13C values (-11.3 ± 0.7%) belong to the Gramineae (Miscanthidium sp.) and Cyperaceae families (Cyperus latifolius, C. papyrus, Pycreus nigricans). In the fossil record, δ13C values of total organic matter vary between -28 and -15% in response to the relative fluxes of C3 and C4 plants. Before 30,000 yr B.P., low δ13C values (-23.5 ± 1.1%) match high arboreal pollen contents. From 30,000 to 15,000 yr B.P., higher δ13C values (-17.6 ± 1.1%) correspond to a significant increase in percentages of grass pollen. During this episode, a short and sharp shift toward lighter carbon isotopic compositions at 21,000 yr B.P. is synchronous with higher input of arboreal pollen. From 15,000 to 12,000 yr B.P., the 13C content decreases (δ13C = -22.9 ± 1.4%). This shift, which cannot be explained by an increase in the arboreal vegetation, could be explained by the spreading of C3 Gramineae or C3 Cyperaceae. The interval from 12,000 to 7000 yr B.P. is poorly documented in these cores due to much lower organic matter accumulation. Low δ13C values (δ13C = -25.2 ± 1.3%) are observed from 7000 to 5000 yr B.P., when the pollen data show development of C3 mountain forest. The Late Holocene is characterized by a mixed C3-C4 organic matter accumulation (δ13C = -20.9 ± 1.6%). This study depicts a change in the dominant photosynthetic pathway among the herbaceous components, notably at the glacial-interglacial transition, when C3 plants were favored by increased water supply and/or higher atmospheric CO2 concentration.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M. Faure, H. Faure-Denard, L. McGlade, J. M., and Woodward, F. I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711714.Google Scholar
Ambrose, S. H., and DeNiro, M. J. (1989). Climate and habitat reconstruction using stable carbon and nitrogen ratios of collagen in prehistoric herbivore teeth from Kenya. Quaternary Research 31, 407422.Google Scholar
Aucour, A. M. (1992). “Composition isotopique (180/l60; 13C/12C) de la mature organique de sediments de tourbidre de Burundi (0-40 000 ans BP). Relation avec les changements climatiques.” Unpublished Ph.D. dissertation, University du Quebec a Montreal.Google Scholar
Barnola, J. M. Raynaud, D. Korotkevich, Y. S., and Lorius, C. (1987). Vostok ice core provides 160,0000 year record of atmospheric C02. Nature 329, 408414.Google Scholar
Bender, M. M. (1968). Mass spectrometric studies of carbon-13 variations in corn and other grasses. Radiocarbon 10, 468472.Google Scholar
Bonnefille, R. (1987). Evolution foresttere et climatique au Burundi durant les quarante demiers milliers d’anndes. Comptes rendus de I’Academie des Sciences 305, 10211026.Google Scholar
Bonnefille, R., and Riollet, G. (1988). The Kashiru pollen sequence (Burundi). Paleoclimatic implications for the last 40,000 yr B.P. in tropical Africa. Quaternary Research 30, 1935.Google Scholar
Bonnefille, R. Hamilton, A. C. Linder, H. P. Riollet, G. (1990). 30,000 year old fossil Restionaceae pollen from Central Equatorial Africa and its biogeographical significance. Journ. of Biogeogr. 17, 307314.Google Scholar
Bonnefille, R. Roeland, J. C., and Guiot, J. (1990). Temperature and rainfall estimates for the past 40 000 yr BP in Equatorial East Africa. Nature 346, 347349.Google Scholar
Bultot, F. (1972). Rwanda and Burundi. In “Climates of Africa” (Griffiths, J. F., Ed.), pp. 349366. Elsevier, Amsterdam.Google Scholar
Cerling, T. E. Quade, J. Wang, Y., and Bowman, J. R. (1989). Carbon isotopes in soils and palaeosols as ecology and palaeoecology indi-cators. Nature 341, 138139.Google Scholar
Craig, H. (1954). Carbon-13 in plants and the relationship between carbon-13 and carbon-14 in nature. Journal of Geology 62, 115149.Google Scholar
Deines, P. (1980). The isotopic composition of reduced organic carbon. In “Handbook of Environmental Isotope Geochemistry: The terrestrial environment A” (Fritz, P., and Fontes, J. C., Eds.), Vol. 1, pp. 329406. Elsevier, Amsterdam.Google Scholar
DeNiro, M. J., and Hastorf, F. C. A. (1985). Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: Studies utilizing archaeological specimens from Peru. Geochimica et Cosmochimica Acta 49, 97115.CrossRefGoogle Scholar
Deuse, P. (1966). Contribution a l’dtude des tourbiferes du Rwanda et du Burundi. Publication de I Institut national de recherche scientifique Butare Rwanda 4, 53115.Google Scholar
Ehleringer, J. R. Sowan, R. F. Flanagan, L. B., and Pearcy, R. W. (1991). Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution 6, 9599.CrossRefGoogle Scholar
Friedli, H. Lotscher, H. Oeschger, H. Siegenthaler, U., and Stauffer, B. (1986). Ice core record of the l3C/12C ratio of atmospheric C02 in the past two centuries. Nature 324, 237238.CrossRefGoogle Scholar
Guillet, B. Faivre, P. Mariotti, A., and Khobzi, J. (1988). The UC dates and 13C/12C ratios of soil organic matter as a mean of studying the past vegetations in intertropical regions: Examples from Colombia (South America). Palaeogeogrpahy, Palaeoclimatology, Palaeoecology 65, 5158.Google Scholar
Hesla, B. I. Tieszen, L. L., and Imbamba, S. K. (1982). A systematic survey of C3 and C4 photosynthesis in the Cyperaceae of Kenya, East Africa. Photosynthetica 16, 196205.Google Scholar
Hillaire-Marcel, C. Aucour, A. M. Bonnefille, R. Riollet, G. Vincens, A., and Williamson, D. (1989). 13C/palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African rift lakes and peat bogs. Quaternary Science Reviews 8, 207210.CrossRefGoogle Scholar
Krishnamurthy, R. V. DeNiro, M. J., and Pant, R. K. (1982). Isotope evidence for Pleistocene climatic changes in Kashmir, India. Nature 298, 640641.Google Scholar
Lerman, J. C., and Raynal, J. (1972). La teneur en isotopes stables du carbone chez les Cyp6rac6es: sa valeur taxonomique. Comptes rendus de VAcademic des Sciences 275, 13911394.Google Scholar
Livingstone, D. A., and Clayton, W. D. (1980). An altitudinal cline in tropical African grass floras and its paleoecological significance. Quaternary Research 13, 392402.Google Scholar
Smith, B. N., and Epstein, S. (1971). Two categories of l3C/,2C ratios for higher plants. Plant Physiology 47, 380384.Google Scholar
Stump, R. K., and Frazer, J. W. (1973). “Simultaneous Determination of Carbon, Hydrogen and Nitrogen Ratios in Organic Compounds,” Report 1973, UCID-16198. University of California, Livermore.Google Scholar
Talbot, M. R., and Johannessen, T. (1992). A high resolution palaeoclimatic record for the last 27,500 years in tropical Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110, 2337.Google Scholar
Thompson, K., and Hamilton, A. C. (1983). Peatlands and swamps of the African continents. In “Mires: Swamp, Bog, Fen, Moor. Regional Studies” (Gore, A. J. P., Ed.), pp. 331373. Elsevier, Amsterdam.Google Scholar
Tieszen, L. L. Senyimba, M. M., and Imbamba, S. K. (1979). The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologica 37, 337350.Google Scholar
Tieszen, L. L., and Boutton, T. W. D. (1989). Stable carbon isotopes in terrestrial ecosystem research. In “Stable Isotopes in Ecological Research” (Rundel, P. W. Ehleringer, J. R., and Nagy, K. A., Eds.), pp. 167195, Springer-Verlag, New York.Google Scholar
Trough ton, J. H. (1972). Carbon isotope fractionation in plants. Proceeding of the Eighth Conference of Radiocarbon Dating, Royal Society of New Zealand, Wellington 2, 3957.Google Scholar
Wickman, F. E. (1952). Variations in the relative abundances of the carbon isotopes in plants. Geochimica et Cosmochimica Acta 2, 243254.Google Scholar
Young, H. J., and Young, T. P. (1983). Local distribution of C3 and C4 grasses in sites of overlap on Mt. Kenya. Oecologica 58, 373377.Google Scholar