Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T06:08:47.216Z Has data issue: false hasContentIssue false

Late Plio-Pleistocene humidity fluctuations in the western Qaidam Basin (NE Tibetan Plateau) revealed by an integrated magnetic–palynological record from lacustrine sediments

Published online by Cambridge University Press:  20 January 2017

Christian Herb
Affiliation:
Department of Geosciences, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
Andreas Koutsodendris
Affiliation:
Paleoenvironmental Dynamics Group, Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
Weilin Zhang
Affiliation:
Department of Geosciences, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Beijing 100101, China
Erwin Appel*
Affiliation:
Department of Geosciences, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
Xiaomin Fang
Affiliation:
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Beijing 100101, China
Silke Voigt
Affiliation:
Institute of Geosciences, University of Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
Jörg Pross
Affiliation:
Paleoenvironmental Dynamics Group, Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
*
*Corresponding author.Email Address:[email protected]

Abstract

Deciphering the climatic evolution of the Tibetan Plateau region during the Plio-Pleistocene is hampered by the lack of continuous archives and proxy datasets indicative of moisture availability. Here we assess the suitability of magnetic susceptibility (χ) measured on lacustrine sediments as a paleohydrological proxy based on material from drill core SG-1 (2.69–0.08 Ma) from the western Qaidam Basin. Our assessment is based on directly comparing χ with the Artemisia/Chenopodiaceae (A/C) pollen ratio, which represents a sensitive, well-established proxy for moisture changes in arid environments. We find that higher and lower χ values represent drier and less dry conditions, respectively, for the Late Plio-Pleistocene. Less dry phases were likely caused by transiently increased influence of the westerlies and/or decreased influence of the Asian winter monsoon on glacial–interglacial time scales. An exception from this relationship is the interval between ~ 1.9 and 1.3 Ma, when the SG-1 χ record exhibits a 54 ka cyclicity, which may indicate summer monsoon influence on the Qaidam Basin during that time. After ~ 1.3 Ma, the summer monsoon influence may have ceased due to global cooling, with the consequence that the Asian winter monsoon and the westerlies exerted a stronger control on the hydrology of the Qaidam Basin.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M.E., Okuno, J., Takahashi, K., and Blatter, H. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, (2013). 190193.Google Scholar
An, Z.S., Kutzbach, J.E., Prell, W.L., and Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, (2001). 6266.Google Scholar
An, Z.S., Clemens, S.C., Shen, J., Qiang, X.O., Jin, Z.D., Sun, Y.B., Prell, W.L., Luo, J.J., Wang, S.M., Xu, H., Cai, Y.J., Zhou, W.J., Liu, X.D., Liu, W.G., Shi, Z.G., Yan, L.B., Xiao, X.Y., Chang, H., Wu, F., Ai, L., and Lu, F.Y. Glacial–interglacial Indian summer monsoon dynamics. Science 333, (2011). 719723.Google ScholarPubMed
Ao, H., Dekkers, M.J., Qin, L., and Xiao, G.Q. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quaternary Science Reviews 30, (2011). 15601575.Google Scholar
Berger, A., and Loutre, M.F. Modeling the 100-kyr glacial–interglacial cycles. Global and Planetary Change 72, (2010). 275281.Google Scholar
Birks, H.J.B., and Birks, H.H. Quaternary Palaeoecology. (1980). Edward Arnold, London.Google Scholar
Bloemendal, J., and Liu, X.M. Rock magnetism and geochemistry of two Plio-Pleistocene Chinese loess-palaeosol sequences − implications for quantitative palaeoprecipitation reconstruction. Palaeogeography Palaeoclimatology Palaeoecology 226, (2005). 149166.Google Scholar
Bolton, C.T., Chang, L., Clemens, S.C., Kodama, K., Ikehara, M., Medina-Elizalde, M., Paterson, G.A., Roberts, A.P., Rohling, E.J., Yamamoto, Y., and Zhao, X.A. A 500,000 year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure. Quaternary Science Reviews 77, (2013). 167180.CrossRefGoogle Scholar
Boos, W.R., and Kuang, Z.M. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, (2010). 218222.Google Scholar
Bothe, O., Fraedrich, K., and Zhu, X.H. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theoretical and Applied Climatology 108, (2012). 345354.Google Scholar
Buggle, B., Hambach, U., Kehl, M., Marković, S.B., Zöller, L., and Glaser, B. The progressive evolution of a continental climate in southeast-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences. Geology 41, (2013). 771774.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S.B., and Glaser, B. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117, (2014). 422.CrossRefGoogle Scholar
Cai, M.T., Fang, X.M., Wu, F.L., Miao, Y.F., and Appel, E. Pliocene–Pleistocene stepwise drying of Central Asia: evidence from paleomagnetism and sporopollen record of the deep borehole SG-3 in the western Qaidam Basin, NE Tibetan Plateau. Global and Planetary Change 94–95, (2012). 7281.Google Scholar
Chen, K.Z., and Bowler, J.M. Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai province, China. Palaeogeography Palaeoclimatology Palaeoecology 54, (1986). 87104.Google Scholar
Chen, W., Graf, H.-F., and Huang, R.H. The interannual variability of East Asian Winter Monsoon and its relation to the summer monsoon. Advances in Atmospheric Sciences 17, (2000). 4860.Google Scholar
Chen, B., Xu, X.-D., Yang, S.A., and Zhang, W. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theoretical and Applied Climatology 110, (2012). 423435.Google Scholar
Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., and Roy, M. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 . Quaternary Science Reviews 25, (2006). 31503184.Google Scholar
Clemens, S.C., and Prell, W.L. Late Quaternary forcing of Indian Ocean summer-monsoon winds: a comparison of Fourier model and general circulation model results. Journal of Geophysical Research 96, (1991). 2268322700.Google Scholar
Clemens, S., Prell, W., Murray, D., Shimmield, G., and Weedon, G. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, (1991). 720725.CrossRefGoogle Scholar
Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, (1979). 829836.Google Scholar
Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S., and Fang, X.M. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, (2007). 635638.CrossRefGoogle ScholarPubMed
Dupont-Nivet, G., Hoorn, C., and Konert, M. Tibetan uplift prior to the Eocene–Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology 36, (2008). 987990.Google Scholar
Egli, R., Chen, A.P., Winklhofer, M., Kodama, K.P., and Horng, C.S. Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochemistry, Geophysics, Geosystems 11, (2010). http://dx.doi.org/10.1029/2009GC002916 (Q01Z11) Google Scholar
Fang, X.M., Li, J.J., and Van der Voo, R. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800,000 years B.P. related to Tibetan uplift. Earth and Planetary Science Letters 165, (1999). 129144.CrossRefGoogle Scholar
Fang, X.M., Zhang, W.L., Meng, Q.Q., Gao, J.P., Wang, X.M., King, J., Song, C.H., Dai, S., and Miao, Y.F. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters 258, (2007). 293306.CrossRefGoogle Scholar
Fang, X.M., Wu, F.L., Han, W.X., Wang, Y.D., Zhang, X.Z., and Zhang, W.L. Plio-Pleistocene drying process of Asian inland − sporopollen and salinity records from Yahu section in the central Qaidam Basin. Quaternary Sciences 28, (2008). 874882. (in Chinese)Google Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D., and Matter, A. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, (2007). 170188.Google Scholar
Ge, K.P., Williams, W., Liu, Q.S., and Yu, Y.J. Effects of the core–shell structure on the magnetic properties of partially oxidized magnetite grains: experimental and micromagnetic investigations. Geochemistry, Geophysics, Geosystems 15, (2014). 20212038.CrossRefGoogle Scholar
Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., and Liu, T.S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, (2002). 159163.CrossRefGoogle ScholarPubMed
Guo, Z.T., Peng, S.Z., Hao, Q.Z., Biscaye, P.E., An, Z.S., and Liu, T.S. Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global and Planetary Change 41, (2004). 135145.Google Scholar
Han, W.X., Fang, X.M., Ye, C.C., Teng, X.H., and Zhang, T. Tibet forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: carbonate isotope records from deep drilling in the Qaidam salt playa, NE Tibet. Global and Planetary Change 116, (2014). 6875.CrossRefGoogle Scholar
Han, W.X., Ma, Z.B., Lai, Z.P., Appel, E., Fang, X.M., and Yu, L.P. Wind erosion on the NE Tibetan Plateau: constraints from OSL and U–Th dating of playa salt crust in the Qaidam Basin. Earth Surface Processes and Landforms 39, (2014). 779789.CrossRefGoogle Scholar
Haneda, K., and Morrish, A.H. Vacancy ordering in γ-Fe2O3 small particles. Solid State Communications 22, (1977). 779782.CrossRefGoogle Scholar
Harrison, T.M., Yin, A., and Ryerson, F.J. Orographic evolution of the Himalaya and Tibetan Plateau. Crowley, T.J., and Burke, K. Tectonic Boundary Conditions for Climate Reconstructions. (1998). Oxford University Press, Oxford. 3972.Google Scholar
Head, M.J., and Gibbard, P.L. Early–Middle Pleistocene transitions: an overview and recommendation for the defining boundary. Head, M.J., and Gibbard, P.L. Early–Middle Pleistocene Transitions: The Land–Ocean Evidence. (2005). Geological Society, London. 118.Google Scholar
Heermance, R.V., Pullen, A., Kapp, P., Garzione, C.N., Bogue, S., Ding, L., and Song, P.P. Climatic and tectonic controls on sedimentation and erosion during the Pliocene–Quaternary in the Qaidam Basin (China). Geological Society of America Bulletin 125, (2013). 833856.Google Scholar
Helsel, D.R., Mueller, D.K., and Slack, J.R. Computer Program for the Kendall Family of Trend Tests. (2006). U.S. Geological Survey, Reston.Google Scholar
Herb, C., Zhang, W.L., Koutsodendris, A., Appel, E., Fang, X.M., and Pross, J. Environmental implications of the magnetic record in Pleistocene lacustrine sediments of the Qaidam Basin, NE Tibetan Plateau. Quaternary International 313–314, (2013). 218229.Google Scholar
Herb, C., Appel, E., Voigt, S., Koutsodendris, A., Pross, J., Zhang, W.L., and Fang, X.M. Orbitally tuned age model for the Late Pliocene–Pleistocene lacustrine succession of drill core SG-1 from the western Qaidam Basin (NE Tibetan Plateau). Geophysical Journal International 200, (2015). 3551.CrossRefGoogle Scholar
Herzschuh, U. Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. Journal of Biogeography 34, (2007). 12651273.Google Scholar
Hu, S.Y., Goddu, S.R., Herb, C., Appel, E., Gleixner, G., Wang, S.M., Yang, X.D., and Zhu, X.H. Climate variability and its magnetic response recorded in a lacustrine sequence in Heqing basin at the SE Tibetan Plateau since 900 ka. Geophysical Journal International 201, (2015). 444458.Google Scholar
Huang, Q.H., Huang, H.C., and Ma, Y.S. Geology of Qaidam Basin and Its Petroleum Prediction. (1996). Geological Publishing House, Beijing. (in Chinese)Google Scholar
Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., and Toggweiler, J.R. On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8, (1993). 699735.CrossRefGoogle Scholar
Kapp, P., Pelletier, J.D., Rohrmann, A., Heermance, R., Russell, J., and Ding, L. Wind erosion in the Qaidam Basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today 21, (2011). 410.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B. A long term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, (2004). 261285.Google Scholar
Li, Z.X., Yao, T.D., Tian, L.D., Yu, W.S., Guo, X.J., and Wang, Y.Q. Variation of δ18O in precipitation in annual timescale with moisture transport in Delingha region. Earth Science Frontiers 13, (2006). 330334. (in Chinese)Google Scholar
Licht, A., van Cappelle, M., Abels, H.A., Ladant, J.B., Trabucho-Alexandre, J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lecuyer, C., Terry, D. Jr., Adriaens, R., Boura, A., Guo, Z., Soe, A.N., Quade, J., Dupont-Nivet, G., and Jaeger, J.J. Asian monsoons in a Late Eocene greenhouse world. Nature 513, (2014). 501506.Google Scholar
Lisiecki, L.E., and Raymo, M.E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, (2005). PA1003 http://dx.doi.org/10.1029/2004PA001071 Google Scholar
Liu, X.D., and Dong, B.W. Influence of the Tibetan Plateau uplift on the Asian monsoon–arid environment evolution. Chinese Science Bulletin 58, (2013). 42774291.Google Scholar
Liu, D.L., Fang, X.M., Song, C.H., Dai, S., Zhang, T., Zhang, W.L., Miao, Y.F., Liu, Y.Q., and Wang, J.Y. Stratigraphic and paleomagnetic evidence of mid-Pleistocene rapid deformation and uplift of the NE Tibetan Plateau. Tectonophysics 486, (2010). 108119.Google Scholar
Lu, Y., Fang, X.M., Appel, E., Wang, J.Y., Herb, C., Han, W.X., Wu, F.L., and Song, C.H. 7.3–1.6 Ma grain size record of interaction between anticline uplift and climate change in the western Qaidam Basin, NE Tibetan Plateau. Sedimentary Geology 319, (2015). 4051.CrossRefGoogle Scholar
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. Journal of Climate 27, (2014). 19101927.CrossRefGoogle Scholar
Mölg, T., Maussion, F., and Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change 4, (2014). 6873.Google Scholar
Molnar, P., Boos, W.R., and Battisti, D.S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences 38, (2010). 77102.CrossRefGoogle Scholar
Nie, J.S., Song, Y.G., King, J.W., Zhang, R., and Fang, X.M. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ~ 4.5–2.6 Ma. Quaternary Research 79, (2013). 465470.Google Scholar
Pross, J., Klotz, S., and Mosbrugger, V. Reconstructing palaeotemperatures for the Early and Middle Pleistocene using the mutual climatic range method based on plant fossils. Quaternary Science Reviews 19, (2000). 17851799.Google Scholar
Qiu, J. The third pole. Nature 454, (2008). 393396.Google Scholar
Ramstein, G., Fluteau, F., Besse, J., and Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, (1997). 788795.Google Scholar
Roberts, A.P., Pike, C.R., and Verosub, K.L. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research 105, (2000). 2846128475.Google Scholar
Rowan, C.J., and Roberts, A.P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters 241, (2006). 119137.Google Scholar
Rowley, D.B., and Currie, B.S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, (2006). 677681.Google Scholar
Ruddiman, W.F., and Kutzbach, J.E. Forcing of Late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research 94, (1989). 1840918427.Google Scholar
Schulz, M., and Stattegger, K. SPECTRUM: spectral analysis of unevenly spaced paleoclimatic time series. Computers & Geosciences 23, (1997). 929945.Google Scholar
Sidhu, P.S. Transformation of trace element-substituted maghemite to hematite. Clays and Clay Minerals 36, (1988). 3138.Google Scholar
Song, C.H., Gao, D.L., Fang, X.M., Cui, Z.J., Li, J.J., Yang, S.L., Jin, H.B., Burbank, D., and Kirschvink, J.L. Late Cenozoic high-resolution magnetostratigraphy in the Kunlun Pass Basin and its implications for the uplift of the northern Tibetan Plateau. Chinese Science Bulletin 50, (2005). 19121922.Google Scholar
Sun, Y.B., An, Z.S., Clemens, S.C., Bloemendal, J., and Vandenberghe, J. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters 297, (2010). 525535. (data file URL: ftp://ftp.ncdc.noaa.gov/pub/data/paleo/loess/china/sun2010lingtai.xls; data accessed: 2014-09-24)Google Scholar
Tang, Z.H., Ding, Z.L., White, P.D., Dong, X.X., Ji, J.L., Jiang, H.C., Luo, P., and Wang, X. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth and Planetary Science Letters 302, (2011). 439447.CrossRefGoogle Scholar
van Velzen, A.J., and Dekkers, M.J. Low-temperature oxidation of magnetite in loess–paleosol sequences: a correction of rock magnetic parameters. Studia Geophysica et Geodaetica 43, (1999). 357375.Google Scholar
Wang, B. The Asian Monsoon. (2006). Springer, Berlin.CrossRefGoogle Scholar
Wang, J., Wang, Y.J., Liu, Z.C., Li, J.Q., and Xi, P. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography Palaeoclimatology Palaeoecology 152, (1999). 3747.Google Scholar
Wang, J.Y., Fang, X.M., Appel, E., and Song, C.H. Pliocene–Pleistocene climate change at the NE Tibetan Plateau deduced from lithofacies variation in the drill core SG-1, western Qaidam Basin, China. Journal of Sedimentary Research 82, (2012). 933952.CrossRefGoogle Scholar
Winklhofer, M., and Zimanyi, G.T. Extracting the intrinsic switching field distribution in perpendicular media: a comparative analysis. Journal of Applied Physics 99, (2006). http://dx.doi.org/10.1063/1.2176598 (08E710) Google Scholar
Winklhofer, M., Dumas, R.K., and Liu, K. Identifying reversible and irreversible magnetization changes in prototype patterned media using first- and second-order reversal curves. Journal of Applied Physics 103, (2008). dx.doi.org/10.1063/1.2837888 (07C518) CrossRefGoogle Scholar
Wu, F.L., Fang, X.M., Herrmann, M., Mosbrugger, V., and Miao, Y.F. Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records. Global and Planetary Change 76, (2011). 1621.CrossRefGoogle Scholar
Xia, W.C., Zhang, N., Yuan, X.P., Fan, L.S., and Zhang, B.S. Cenozoic Qaidam Basin, China: a stronger tectonic inversed, extensional rifted basin. AAPG Bulletin 85, (2001). 715736.Google Scholar
Xiao, J.L., Porter, S.C., An, Z.S., Kumai, H., and Yoshikawa, S. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr. Quaternary Research 43, (1995). 2229.Google Scholar
Xu, G.B., Chen, T., Liu, X.H., An, W.L., Wang, W.Z., and Yun, H.B. Potential linkages between the moisture variability in the northeastern Qaidam Basin, China, since 1800 and the East Asian summer monsoon as reflected by tree ring δ18O. Journal of Geophysical Research 116, (2011). D09111 http://dx.doi.org/10.1029/2010JD015053 Google Scholar
Yang, Y.B., Fang, X.M., Appel, E., Galy, A., Li, M.H., and Zhang, W.L. Late Pliocene–Quaternary evolution of redox conditions in the western Qaidam paleolake (NE Tibetan Plateau) deduced from Mn geochemistry in the drilling core SG-1. Quaternary Research 80, (2013). 586595.Google Scholar
Yang, Y.B., Fang, X.M., Galy, A., Appel, E., and Li, M.H. Quaternary paleolake nutrient evolution and climatic change in the western Qaidam Basin deduced from phosphorus geochemistry record of deep drilling core SG-1. Quaternary International 313–314, (2013). 156167.Google Scholar
Yang, Y.B., Fang, X.M., Galy, A., Li, M.H., Appel, E., and Liu, X.M. Paleoclimatic significance of rare earth element record of the calcareous lacustrine sediments from a long core (SG-1) in the western Qaidam Basin, NE Tibetan Plateau. Journal of Geochemical Exploration 145, (2014). 223232.Google Scholar
Yang, Y.B., Fang, X.M., Li, M.H., Galy, A., Koutsodendris, A., and Zhang, W.L. Paleoenvironmental implications of uranium concentrations in lacustrine calcareous clastic-evaporite deposits in the western Qaidam Basin. Palaeogeography Palaeoclimatology Palaeoecology 417, (2015). 422431.Google Scholar
Yao, T.D., Thompson, L., Yang, W., Yu, W.S., Gao, Y., Guo, X.J., Yang, X.X., Duan, K.Q., Zhao, H.B., Xu, B.Q., Pu, J.C., Lu, A.X., Xiang, Y., Kattel, D.B., and Joswiak, D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, (2012). 663667.CrossRefGoogle Scholar
Yin, A., Dang, Y.Q., Zhang, M., McRivette, M.W., Burgess, W.P., and Chen, X.H. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range. Geological Society of America Special Papers 433, (2007). 369390.Google Scholar
Yin, A., Dang, Y.-Q., Zhang, M., Chen, X.-H., and McRivette, M.W. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (part 3): structural geology, sedimentation, and regional tectonic reconstruction. GSA Bulletin 120, (2008). 847876.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, (2001). 686693.CrossRefGoogle ScholarPubMed
Zhang, Y.G., Ji, J.F., Balsam, W.L., Liu, L.W., and Chen, J. High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Niño over the past 600,000 years. Earth and Planetary Science Letters 264, (2007). 136150.Google Scholar
Zhang, Y.G., Ji, J.F., Balsam, W., Liu, L.W., and Chen, J. Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation. Geology 37, (2009). 599602.Google Scholar
Zhang, S.R., Xu, Q.H., Nielsen, A.B., Chen, H., Li, Y.C., Li, M.Y., Hun, L.Y., and Li, J.Y. Pollen assemblages and their environmental implications in the Qaidam Basin, NW China. Boreas 41, (2012). 602613.Google Scholar
Zhang, W.L., Appel, E., Fang, X.M., Song, C.H., and Cirpka, O. Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Quaternary Research 78, (2012). 139148.Google Scholar
Zhang, W.L., Appel, E., Fang, X.M., Yan, M.D., Song, C.H., and Cao, L.W. Paleoclimatic implications of magnetic susceptibility in Late Pliocene–Quaternary sediments from deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau). Journal of Geophysical Research 117, (2012). B06101 http://dx.doi.org/10.1029/2011JB008949 Google Scholar
Zhang, W.L., Fang, X.M., Song, C.H., Appel, E., Yan, M.D., and Wang, Y.D. Late Neogene magnetostratigraphy in the western Qaidam Basin (NE Tibetan Plateau) and its constraints on active tectonic uplift and progressive evolution of growth strata. Tectonophysics 599, (2013). 107116.Google Scholar
Zhang, W.L., Appel, E., Fang, X.M., Song, C.H., Setzer, F., Herb, C., and Yan, M.D. Magnetostratigraphy of drill-core SG-1b in the western Qaidam Basin (NE Tibetan Plateau) and tectonic implications. Geophysical Journal International 197, (2014). 90118.Google Scholar
Zhao, Y., and Herzschuh, U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Vegetation History and Archaeobotany 18, (2009). 245260.CrossRefGoogle Scholar
Zhao, Y., Yu, Z.C., Chen, F.H., Ito, E., and Zhao, C. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology 145, (2007). 275288.Google Scholar
Zhao, Y., Liu, H.Y., Li, F.R., Huang, X.Z., Sun, J.H., Zhao, W.W., Herzschuh, U., and Tang, Y. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. The Holocene 22, (2012). 13851392.CrossRefGoogle Scholar
Supplementary material: File

Herb et al. supplementary material

Supplementary Material

Download Herb et al. supplementary material(File)
File 1.7 MB