Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T18:45:49.013Z Has data issue: false hasContentIssue false

Late Pleistocene–Holocene stress in the South American intraplate evidenced by tectonic instability in central Amazonia

Published online by Cambridge University Press:  11 March 2021

Dilce F. Rossetti*
Affiliation:
Instituto Brasileiro de Pesquisas Espaciais–INPE, São José dos Campos-SP, 12245-970Brazil
Francisco H. R. Bezerra
Affiliation:
Departamento de Geologia, Universidade Federal do Rio Grande do Norte, Natal-RN, 59078-970, Brazil
Márcio M. Valeriano
Affiliation:
Instituto Brasileiro de Pesquisas Espaciais–INPE, São José dos Campos-SP, 12245-970Brazil
Eder Cassola Molina
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo–USP, Cidade Universitária, São Paulo-SP, 05508-900Brazil
*
*Corresponding author at: Instituto Brasileiro de Pesquisas Espaciais–INPE, Rua dos Astronautas 1758, São José dos Campos-SP, 12245–970Brazil. E-mail address: [email protected] (D.F. Rossetti).

Abstract

Documenting neotectonic instabilities and determining the style and time of deformation in the vast and difficult to access central Amazonia region is challenging. We focus on these issues by investigating a large area of the Negro River drainage basin, applying morphostructural analysis based on synthetic aperture radar data. The digital elevation models of the C-band Shuttle Radar Topography Mission and the L-band Protection System of Amazonia were used as the database. We also used subsurface magnetic information from the Earth Magnetic Anomaly Grid global model to validate the morphostructures. The results revealed NW-oriented morphostructural lineaments bounding multiple depositional valley fills. These were extensively fragmented to form regularly distributed en échelon rectangular blocks commonly offset horizontally by several kilometers. Strike-slip faults and oblique, either normal or reverse, faults are present. These structures were reactivated along the main NE- and SW-oriented regional structural trends due to N-S-oriented horizontal compression and E-W-oriented horizontal extension in the late Pleistocene and Holocene. The extensive neotectonic faulting results from the interplay of plate motion and Andean uplifting since the late Pleistocene, combined with local stresses.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeida-Filho, R., Miranda, F.P., 2007. Mega capture of the Rio Negro and formation of the Anavilhanas Archipelago, Central Amazonia, Brazil: evidences in SRTM digital elevation model. Remote Sensing of Environment 110, 387392.CrossRefGoogle Scholar
Alves, F.C., Rossetti, D.F., Valeriano, M.M., Andrades Filho, C.O., 2019. Neotectonics in the South American passive margin: evidence of Late Quaternary uplifting in the northern Paraíba Basin (NE Brazil). Geomorphology 325, 116.CrossRefGoogle Scholar
Assumpção, M., 1992. The regional intraplate stress field in South America. Journal of Geophysical Research Solid Earth 97, 1188911903.CrossRefGoogle Scholar
Assumpção, M., Dias, F.L., Zevallos, I., Naliboff, J., 2016. Intraplate stress field in South America from earthquake focal mechanisms. Journal of South American Earth Sciences 71, 278295.CrossRefGoogle Scholar
Assumpção, M., Ferreira, J., Barros, L., Bezerra, F.H.R., Fraça, G.S., Barbosa, J.R., Menezes, E., et al. ., 2014. In: Talwani, P. (Ed.), Intraplate Earthquakes. Vol. 1. Cambridge University Press, Cambridge, pp. 5071.CrossRefGoogle Scholar
Assumpção, M., Ortega, R., Berrocal, J., Veloso, J.A.V., 1983. O sismo de Codajás-AM, de 05.08.1983. Revista Brasileira de Geofísica 2, 3944.Google Scholar
Assumpção, M., Suárez, G., 1988. Source mechanisms of moderate-size earthquakes and stress orientation in mid-plate South America. Geophysical Journal 9, 253267.CrossRefGoogle Scholar
Assumpção, M., Suarez, G., Veloso, J.A., 1985. Fault plane solutions of intraplate earthquakes in Brazil: some constraints on the regional stress field. Tectonophysics 113, 283293.CrossRefGoogle Scholar
Barros, L.V., Assumpção, M., Quintero, R., Caixeta, D., 2009. The intraplate Porto dos Gaúcos seismic zone in the Amazon craton. Tectonophysics 469, 3747.CrossRefGoogle Scholar
Bezerra, F.H., Castro, D.L., Maia, R.P., Sousa, M.O.L., Moura-Lima, E.N., Rossetti, D.F., Bertotti, G., Souza, Z.S., Nogueira, F.C.C., 2020. Postrift stress field inversion—implications for the petroleum system in the Potiguar Basin and evolution of the equatorial margin of South America. Journal of Marine and Petroleum Geology 111, 88104.CrossRefGoogle Scholar
Bezerra, F.H.R., Brito Neves, B.B., Correa, A.C.B., Barreto, A.M.F., Suguio, K., 2008. Late Pleistocene tectonic-geomorphological development within a passive margin—the Cariatá trough, northeastern Brazil. Geomorphology 97, 555582.CrossRefGoogle Scholar
Bezerra, F.H.R., Rossetti, D.F., Oliveira, R.G., Brito Neves, B.B., Medeiros, W.E., Balsamo, F., Nogueira, F.C., Dantas, E.L., Góes, A.M., Andrades Filho, C.O., 2014. Neotectonic fault reactivation of basement fabric controls sediment deposition and deformation in the continental margin of NE Brazil. Tectonophysics 614, 7890.CrossRefGoogle Scholar
Bezerra, F.H.R., Vita-Finzi, C. 2000. How active is a passive margin? Paleoseismicity in northeastern Brazil. Geology 28, 591594.2.0.CO;2>CrossRefGoogle Scholar
Bezerra, P.E.L., 2003. Compartimentação morfotectônica do interflúvio Solimões-Negro. Ph.D. thesis, Universidade Federal do Pará, Belém, Pará, Brazil.Google Scholar
Bosworth, W., 2008. North Africa–Mediterranean present-day stress field transition and implications for fractured reservoir production in the eastern Libyan basins. Geology of East Libya 4, 123138.Google Scholar
Braiais, J., Guillocheau, F., Lasseur, E., Robin, C., Châteauneauf, J.J., Serrano, O., 2016. Response of low-subsiding intracratonic basin to long wavelength deformations: the Palaeocene–early Eocene period in the Paris Basin. Solid Earth 7, 205228.CrossRefGoogle Scholar
Braitenberg, C., Ebbing, J., 2009. The GRACE-satellite gravity and geoid fields in analysing large-scale cratonic or intracratonic basins. Geophysical Prospecting 57, 559571.CrossRefGoogle Scholar
Brodie, J., White, N.J., 1994. Sedimentary basin inversion caused by igneous underplating: northwest European continental shelf. Geology 22, 147150.2.3.CO;2>CrossRefGoogle Scholar
Caputo, M.V., Soares, E.A.A., 2016. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system. Brazilian Journal of Geology 46, 301328.CrossRefGoogle Scholar
Catto, A.J., 1975. Análise Geológica e Geofísica da Bacia do Pantanal Matogrossense. Internal Report. Petrobras, Rio de Janeiro.Google Scholar
Ciardelli, C., Assumpção, M., 2019. Rupture lengths of intraplate earthquakes in Brazil determined by relative location of aftershocks: evidence for depth dependence of stress drops. Journal of South American Earth Sciences 89, 246258.CrossRefGoogle Scholar
Coltice, N., Gérault, M., Ulvrová, M., 2017. A mantle convection perspective on global tectonics. Earth-Science Reviews 165, 120150.CrossRefGoogle Scholar
Costa, J.B.S.C., Bemerguy, R.L., Hasui, Y., Borges, M.S., 2001. Tectonics and paleogeography along the Amazon River. Journal of South American Earth Sciences 14, 335347.CrossRefGoogle Scholar
Coudert, L., M., Frappa, C., Viguier, C., Arias, C., 1995. Tectonic subsidence and crustal flexure in the Neogene Chaco basin of Bolivia. Tectonophysics 243, 277292.CrossRefGoogle Scholar
D'Alessandro, L., Miccadei, E., Piacentini, T., 2008. Morphotectonic study of the lower Sangro River valley (Abruzzi, central Italy). Geomorphology 102, 145158.CrossRefGoogle Scholar
Della Seta, M., Monte, M., Fredi, P., Miccadei, E., Nesci, O., Pambianchi, G., Piacentini, T., Troiani, F., 2008. Morphotectonic evolution of the Adriatic piedmont of the Apennines: an advancement in the knowledge of the Marche-Abruzzo border area. Geomorphology 102, 119129.CrossRefGoogle Scholar
Doré, A.G., Lundin, E.R., Kusznir, N.J., Pascal, C., 2008. Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: pros, cons and some new ideas. In: Johnson, H., Doré, A.G., Gatliff, R.W., Holdsworth, R.E, Lundin, R., Ritchie, J.D. (Eds.), The Nature and Origin of Compression in Passive Margins. Geological Society Special Publication 306, 126.Google Scholar
Dumont, J.F., 1996. Neotectonics of the Subandes-Brazilian craton boundary using geomorphological data: the Marañon and Beni basins. Tectonophysics 259, 137151.CrossRefGoogle Scholar
Enrico, M., Tommaso, P., 2011. Two tectonic geomorphology studies on the landscape and drainage network of chain and piedmont areas of the Abruzzi region (central Apennines, Italy). In: Schattner, U. (Ed.), New Frontiers in Tectonic Research—At the Midst of Plate Convergence. IntechOpen, Rijeka, Croatia, pp. 173214.Google Scholar
Franzinelli, E., Igreja, H., 2002. Modern sedimentation in the lower Negro River, Amazonas State, Brazil. Geomorphology 44, 259271.CrossRefGoogle Scholar
Franzinelli, E., Igreja, H., Repolho, T. 1999. Fragmentation of ecosystem owing to neotectonics in the Amazon basin. Science Reports of Tohoku University, 7th series 49, 207214.Google Scholar
Franzinelli, E., Latrubesse, E., 1993. Neotectonic in the central part of the Amazon basin. Bulletin of the INQUA Neotectonic Commission 16, 1013.Google Scholar
Freund, R., 1970. Rotation of strike-slip faults in Sistan, southeast Iran. Journal of Geology 78, 188200.CrossRefGoogle Scholar
Gandini, R., Rossetti, D.F., Netto, R., Bezerra, F.H.R., Góes, A.M., 2014. Neotectonic evolution of the Brazilian northeastern continental margin based on sedimentary facies and ichnology. Quaternary Research 82, 462472.CrossRefGoogle Scholar
Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science 320, 13041307.CrossRefGoogle ScholarPubMed
Gunnell, Y., Fleitout, L., 2000. Shoulder uplift of the Western Ghats passive margin, India: a denudational model. Earth Surface Processes and Landforms 23, 391404.3.0.CO;2-5>CrossRefGoogle Scholar
Hayakawa, E.H., Rossetti, D.F., Valeriano, M.M., 2010. Applying DEM–SRTM for reconstructing a late Quaternary paleodrainage in Amazonia. Earth and Planetary Science Letters 297, 262270.CrossRefGoogle Scholar
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, M., et al. ., 2018. The World Stress Map database release 2016: crustal stress pattern across scales. Tectonophysics 744, 484498.CrossRefGoogle Scholar
Holmes, A., 1931. Radioactivity and earth movements. Transactions of the Geological Society of Glasgow 18, 559606.CrossRefGoogle Scholar
Holmes, A., 1965. Principles of Physical Geology. 2nd ed. Thomas Nelson, London.Google Scholar
Howard, A.D., 1967. Drainage analysis in geologic interpretation: a summation. American Association of Petroleum Geologists Bulletin 51, 22462259.Google Scholar
Hudec, M., Jackson, M.P.A., 2002. Structural segmentation, inversion, and salt tectonics on a passive margin: evolution of the Inner Kwanza Basin, Angola. Geological Society of America Bulletin 115, 639640.Google Scholar
Ibanez, D.M., Riccomini, C., Miranda, F.P., 2014. Geomorphological evidence of recent tilting in the Central Amazonia region. Geomorphology 214, 378387.CrossRefGoogle Scholar
IHGB, 1917. O Diário do Padre Samuel Fritz. Revista do Instituto Histórico e Geográfico Brasileiro 81, 354397.Google Scholar
Instituto Nacional de Pesquisas Espaciais–INPE, 2008. Topodata: banco de dados geomorfométricos do Brasil. http://www.dsr.inpe.br/topodata/data/geotiff (accessed on January 11th, 2021).Google Scholar
Jaillard, E., Hérail, G., Monfret, T., Díaz–Martínez, E., Baby, P., Lavenu, A., Dumont, J.F., 2000. Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. In: Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. (Ed.), Tectonic Evolution of South America. 31st International Geological Congress, Rio de Janeiro, Brazil, pp. 481559.Google Scholar
Jelínek, J., Stanek, F., Thomas, J., Danek, T., Malis, J., 2013. The application of morphostructural analysis and its validation by comparison with documented faults within the Zlaté Hory ore district (the northeastern part of the Bohemian massif). Acta Geodynamic et Geomaterialia 10, 517.CrossRefGoogle Scholar
Jordan, G., Meijninger, B.M.L., van Hinsbergen, D.J.J., Meulenkamp, J.E., van Dijk, P.M., 2005. Extraction of morphotectonic features from DEMs: development and application for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation 7, 163182.CrossRefGoogle Scholar
Kellndorfer, J.W., Pierce, L., Dobson, C., Fites, J.A., Hunsaker, C., Vona, J., Clutter, M., 2004. Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets. Remote Sensing of Environment 3, 339–258.CrossRefGoogle Scholar
Latrubesse, E.M., Cozzuol, M., Silva-Caminha, S.A.F., Rigsby, C.A., Absy, M.L., Jaramillo, C.A., 2010. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews 99, 99124.CrossRefGoogle Scholar
Latrubesse, E.M., Franzinelli, E., 2002. The Holocene alluvial plain of the middle Amazon River, Brazil. Geomorphology 44, 241257.CrossRefGoogle Scholar
Latrubesse, E.M., Franzinelli, E., 2005. The late Quaternary evolution of the Negro River, Amazon, Brazil: implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70, 372397.CrossRefGoogle Scholar
Maia, R.G., Godoy, H.K., Yamaguti, H.S., Moura, P.A., Costa, F.S., 1977. Projeto carvão no Alto Amazonas. CPRM, Rio de Janeiro.Google Scholar
Maurin, J.C., Guiraud, R., 1993. Basement control in the development of the early cretaceous West and Central African rift system. Tectonophysics 228, 8195.CrossRefGoogle Scholar
Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., et al. ., 2009. EMAG2: a 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems 10(8), Q08005.CrossRefGoogle Scholar
Mercier, J.L., Sebrier, M., Lavenu, A., Cabrera, J., Dumont, O., Machare, J., 1992. Changes in the tectonic regime above a subduction zone of Andean-type: the Andes of Peru and Bolivia during the Pliocene–Pleistocene. Journal of Geophysical Research 97, 1194511982.CrossRefGoogle Scholar
Miccadei, E, Paron, P., Piacentini, T., 2004. The SW escarpment of the Montagna del Morrone (Abruzzi, central Italy): geomorphology of a faulted-generated mountain front. Supplementi di Geografia Fisica e Dinamica Quaternaria 27, 5587.Google Scholar
Moulin, M., Aslanian, D., Unternehr, P., 2010. A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews 98, 137.CrossRefGoogle Scholar
Müller, R.D., Lim, V.S.L., Isern, A.R., 2000. Late Tertiary tectonic subsidence on the northeast Australian passive margin: response to dynamic topography? Marine Geology 162, 337352.CrossRefGoogle Scholar
Ojeda, G.Y., Whitman, D., 2002. Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: results from northern South America. Journal of Geophysical Research 107, ETG 3–1–ETG 3–12.CrossRefGoogle Scholar
Pedoja, K., Husson, L., Regard, V., Cobbold, P.R., Ostanciaux, E., Johnson, M.E., Kershaw, S., et al. , 2011. Relative sea−level fall since the last interglacial stage: are coasts uplifting worldwide? Earth-Science Reviews 108, 115.CrossRefGoogle Scholar
Pérez-Gussinyé, M., Lowry, A.R., Watts, A.B., 2007. Effective elastic thickness of South America and its implication for intracontinental deformation. Geochemistry, Geophysics, Geosystems 8, Q05009.CrossRefGoogle Scholar
Polidori, L., Simonetto, E., 2014. Effect of scale on the correlation between topography and canopy elevations in an airborne InSAR product over Amazonia. Procedia Technology 16, 180185.CrossRefGoogle Scholar
Ramsay, J., 1980, Shear zone geometry: a review. Journal of Structural Geology 2, 8399.CrossRefGoogle Scholar
Reis, N.J., Almeida, M.E., Riker, S.L., Ferreira, A.L., 2006. Geologia e Recursos Minerais do Estado do Amazonas: sistema de informações geográficas–SIG: texto explicativo do mapa geológico e de recursos minerais do Estado do Amazonas. Escala 1.1:000.000. Mapas Geológicos Estaduais, Programa Geologia do Brasil, CPRM, Manaus.Google Scholar
Riccomini, C., Assumpção, M., 1999. Quaternary tectonics in Brazil. Episodes 22, 221225.CrossRefGoogle Scholar
Rosa, J.W.C., Rosa, J.W.C., Fuck, R.A., 2014. Geophysical structures and tectonic evolution of the southern Guyana shield, Brazil. Journal of South American Earth Sciences 52, 5771.CrossRefGoogle Scholar
Rossetti, D.F., 2014a. Imaging underwater neotectonic structures in the Amazonian lowland. The Holocene 24, 12691277.CrossRefGoogle Scholar
Rossetti, D.F., 2014b. The role of tectonics in the late Quaternary evolution of Brazil's Amazonian landscape. Earth-Science Reviews 139, 362389.CrossRefGoogle Scholar
Rossetti, D.F., Alves, F.C., Valeriano, M.M., 2017a. A tectonically-triggered late Holocene seismite in the southern Amazonian lowlands, Brazil. Sedimentary Geology 358, 7083.CrossRefGoogle Scholar
Rossetti, D.F., Bezerra, F.H.R., Dominguez, J.M.L., 2013. Late Oligocene–Miocene transgressions along the equatorial and eastern margins of Brazil. Earth-Science Reviews 123, 87112.CrossRefGoogle Scholar
Rossetti, D.F., Molina, E. C. Cremon, E.H., 2016. Genesis of the largest Amazonian wetland in northern Brazil inferred by morphology and gravity anomalies. Journal of South American Earth Sciences 69, 110.CrossRefGoogle Scholar
Rossetti, D.F., Toledo, P.M., Góes, A.M., 2005. New geological framework for western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research 63, 7889.CrossRefGoogle Scholar
Rossetti, D.F., Toledo, P.M., Valeriano, M.M., 2019. Neotectonics and tree mortality in a forest ecosystem of the Negro basin: geomorphic evidence of contemporary seismicity in the intracratonic Brazilian Amazonia. Geomorphology 329, 138151.CrossRefGoogle Scholar
Rossetti, D.F., Valeriano, M.M., Gribel, R., Cohen, M.C.L., Tatumi, S.H., Yee, M. 2017b. The imprint of Late Holocene tectonic reactivation on a megafan landscape in the northern Amazonian wetlands. Geomorphology 295, 406418.CrossRefGoogle Scholar
Santos, W.L., Crisóstomo, C.A., Barbosa, A.R.F., Silva, P.M., Nascimento, F.I.C., 2019. Atividades sísmicas na Amazônia: levantamento e caracterização de terremotos na Amazõnia sul-ocidental, Acre, Brasil. Revista GeoUECE 8, 6677.Google Scholar
Sedrette, S., Rebai, N., Mastere, M., 2016. Evaluation of neotectonic signature using morphometric indicators: case study in Nefza, northwest of Tunisia. Journal of Geographic Information System 8, 338350.CrossRefGoogle Scholar
Serviço Geológico do Brasil–CPRM, 2010. Mapa geológico do Brasil (accessed December 2010). http://geobank.sa.cprm.gov.br.Google Scholar
Shepard, G.E., Müller, R.D., Gurnis, M., 2010. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction. Nature Geoscience 3, 870875.CrossRefGoogle Scholar
Sibson, R.H., 1990. Conditions for fault-valve behaviour. In: Knipe, R.J., Rutter, E.H. (Eds.), Deformation Mechanisms, Rheology and Tectonics. Geological Society of London Special Publication 54, 15–28.CrossRefGoogle Scholar
Sibson, R.H., 1994. An assessment of field evidence for Byerlee friction. Pure and Applied Geophysics 142, 645662.CrossRefGoogle Scholar
Silva, C.L., Morales, N., Crósta, A.P., Costa, S.S., Jiménez-Rueda, J.R., 2007. Analysis of tectonically-controlled fluvial morphology and sedimentary processes of the western Amazon basin: an approach using satellite images and digital elevation model. Anais da Academia Brasileira de Ciências 79, 693711.CrossRefGoogle Scholar
Soares, E.A.A., 2007. Depósitos Pleistocenos da Região de Confluência dos Rios Negro e Solimões, Porção Oeste da Bacia do Amazonas. Doctoral thesis, University of São Paulo, São Paulo, Brazil.Google Scholar
Soares, E.A.A., Tatumi, S.H., Riccomini, C., 2010. OSL age determinations of Pleistocene fluvial deposits in central Amazonia. Anais da Academia Brasileira de Ciências 82, 691699.CrossRefGoogle Scholar
Summerfield, M.A., 1991. Global Geomorphology. Wiley, New York.Google Scholar
Su, Z., Wang, E., Furlong, K.P., Shi, X., Wang, G., Fan, C., 2012. Young, active conjugate strike-slip deformation in West Sichuan: evidence for the stress–strain pattern of the southeastern Tibetan Plateau. International Geology Review 54, 9911012.CrossRefGoogle Scholar
Sylvester, A.G., 1988. Strike-slip faults. Geological Society of America Bulletin 100, 16661703.2.3.CO;2>CrossRefGoogle Scholar
Tassinari, C.C.G., Bettencourt, J.S., Geraldes, M.C., Macambira, M.J.B., Lafon, J.M., 2000. The Amazon Craton. In: Cordani, U.G., Milani, E.J., Thomaz-Filho, A., Campos, D.A. (Eds.), Tectonic Evolution of South America. 31st International Geological Congress, Rio de Janeiro, Brazil, pp. 4195.Google Scholar
Tebbens, S.F., Cande, S.C., 1997. Southeast pacific tectonic evolution from early Oligocene to Present. Journal of Geophysical Research 102, 12,06112,084.CrossRefGoogle Scholar
Valeriano, M.M., Rossetti, D.F., 2008. Topographic modeling of Marajó Island with SRTM data. Revista Brasileira de Geomorfologia 9, 5363.CrossRefGoogle Scholar
Valeriano, M.M., Rossetti, D.F., 2017. Regionalization of local geomorphometric derivations for geological mapping in the sedimentary domain of central Amazônia. Computers and Geosciences 100, 4656.CrossRefGoogle Scholar
Val, P., Silva, C., Harbor, D., Morales, N., Amaral, F., Maia, T., 2013. Erosion of an active fault scarp leads to drainage capture in the Amazon region, Brazil. Earth Surface Processes and Landforms 39, 10621074.CrossRefGoogle Scholar
Veloso, A.V., 2014. On the footprints of a major Brazilian Amazon earthquake. Anais da Academia Brasileira de Ciências 86, 11151129.CrossRefGoogle Scholar
Walker, W.S., Kellndorfer, J.M., Pierce, L.E. 2007. Quality assessment of SRTM C- and X-band interferometric data: implications for the retrieval of vegetation canopy height. Remote Sensing of Environment 106, 428448.CrossRefGoogle Scholar
Wanderley Filho, J.R. 1991. Evolução estrutural da bacia do Amazonas e sua relação com o embasamento. M.Sc. thesis, Universidade Federal do Pará, Belém, Brazil.Google Scholar
Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F., 2013. Generic mapping tools: improved version released. EOS Transactions American Geophysical Union 94, 409410.CrossRefGoogle Scholar