Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T18:25:01.329Z Has data issue: false hasContentIssue false

Late Pleistocene (MIS 3–4) climate inferred from micromammal communities and δ18O of rodents from Les Pradelles, France

Published online by Cambridge University Press:  20 January 2017

Aurélien Royer
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 et Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France EPHE-Ecole Pratique des Hautes Etudes, 21000 Dijon, France
Christophe Lécuyer*
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 et Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France Institut Universitaire de France, Paris, France
Sophie Montuire
Affiliation:
Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France EPHE-Ecole Pratique des Hautes Etudes, 21000 Dijon, France
Gilles Escarguel
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 et Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France
François Fourel
Affiliation:
Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 et Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France
Alan Mann
Affiliation:
Department of Anthropology, Princeton University, Princeton, NJ 08544, USA
Bruno Maureille
Affiliation:
Laboratoire d'Anthropologie des Populations du Passé, UMR CNRS 5199, Université Bordeaux 1, 33405 Cedex, Talence, France
*
*Corresponding author at: Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Lyon 1 et Ecole Normale Supérieure de Lyon, 69622 Villeurbanne, France. Fax: + 33472431688.

Abstract

The middle Paleolithic stratigraphic sequence of Les Pradelles (Charente, France) spans from the end of Marine Isotope Stage (MIS) 4 until the middle of MIS 3. Micromammal remains are present in all the stratigraphic levels, offering a rare opportunity to address the questions of both environmental and climatic fluctuations throughout this period. Climate modes were studied through the taphonomy, biodiversity and oxygen isotope compositions of phosphate (δ18O p ) from 66 samples of rodent tooth enamel. The δ18O p values from the lower sedimentary levels provide summer mean air temperatures of 19 ± 2°C (level 2/1) and of 16 ± 2°C (levels 2A, 2B and 4A). Within the middle of sequence (level 4B), a paleobiodiversity change can be identified with an increase of Dicrostonyx torquatus, which is associated with the largest amplitude in δ18O p values and the highest maximal δ18O p values. At the top of the sequence (level 5-2), a biodiversity change is observed with the increase of Microtus arvalis, but without any change in δ18O p values. The association of cold rodent species with unexpected high and large amplitudes in the δ18O p values of their teeth, possibly indicative of aridity, suggests their deposition during a Heinrich event.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhansli, H., Watts, W.A., Wulf, S., Zolitschka, B., (1999). Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740743.CrossRefGoogle Scholar
Andrews, P., (1990). Owls, Caves, and Fossils: Predation, Preservation, and Accumulation of Small Mammal Bones in Caves, with an Analysis of the Pleistocene Cave Faunas from Westbury-sub-Mendip. University of Chicago Press, Somerset, UK.Google Scholar
Ayliffe, L.K., Lister, A.M., Chivas, A.R., (1992). The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 179191.CrossRefGoogle Scholar
Belmaker, M., Hovers, E., (2011). Ecological change and the extinction of the Levantine Neanderthals: implications from a diachronic study of micromammals from Amud Cave, Israel. Quaternary Science Reviews 30, 31963209.CrossRefGoogle Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F., Jaubert, J., (2009). Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 283, 133143.CrossRefGoogle Scholar
Blake, R.E., O'Neil, J.R., Garcia, G.A., (1997). Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds. Geochimica et Cosmochimica Acta 61, 44114422.Google Scholar
Bourguignon, L., (1997). Le Moustérien de type Quina: nouvelle définition d'une entité technique. PHD dissertationUniversity of Paris X-Nanterre, .Google Scholar
Bryant, J.D., Froelich, P.N., (1995). A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59, 45234537.Google Scholar
Bryant, J.D., Luz, B., Froelich, P.N., (1994). Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 303316.Google Scholar
Chaline, J., (1972). Les rongeurs du Pléistocène moyen et supérieur de France. Cahiers de Paléontologie CNRS, Paris.Google Scholar
Chenery, C., Müldner, G., Evans, J., Eckardt, H., Lewis, M., (2010). Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. Journal of Archaeological Science 37, 150163.Google Scholar
Cochard, D., (2004). Etude préliminaire des micromammifères des niveaux Paléolithique Moyen de Chez Pinaud à Jonzac (Charente, France). Airvaux, J., Le site paléolithique de Chez-Pinaud à Jonzac, Charente-Maritime. Préhistoire du Sud-Ouest, 157162.Google Scholar
Costamagno, S., Meignen, L., Beauval, C., Vandermeersch, B., Maureille, B., (2006). Les Pradelles (Marillac-le-Franc, France): a mousterian reindeer hunting camp?. Journal of Anthropological Archaeology 25, 466484.CrossRefGoogle Scholar
Costamagno, S., Beauval, C., Lange-Badré, B., Vandermeersch, B., Mann, A.E., Maureille, B., (2008). Homme ou carnivores? Protocole d'étude d'ensembles osseux mixtes: l'exemple du gisement moustérien des Pradelles (Marillac-le-Franc, Charente). Palethnologie 1, 372400.Google Scholar
Crowson, R.A., Showers, W.J., Wright, E.K., Hoering, T.C., (1991). Preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63, 23972400.CrossRefGoogle Scholar
Cuenca-Bescós, G., Straus, L.G., González Morales, M.R., García Pimienta, J.C., (2009). The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria, Spain). Journal of Archaeological Science 36, 947955.Google Scholar
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
Daux, V., Lécuyer, C., Adam, F., Martineau, F., Vimeux, F., (2005). Oxygen isotope composition of human teeth and the record of climate changes in France (Lorraine) during the last 1,700 years. Climatic Change 70, 445464.Google Scholar
David, P., (1934). Communication en séance “Ossements fossiles découverts récemment dans un abri-repaire inédit”. Bulletins et Mémoires de la Société Archéologique et Historique de Charente 3738.Google Scholar
David, P., (1935). Les fouilles de l'abri-repaire de Marillac, près La Rochefoucault. Bulletins et Mémoires de la Société d'Archéologie et d'Histoire de la Charente 8990.Google Scholar
Delagnes, A., Tournepiche, J.F., Armand, D., Desclaux, E., Diot, M.F., Ferrier, C., Le Fillâtre, V., Vandermeersch, B., (1999). Le gisement Pléistocène moyen et supérieur d'Artenac (Saint-Mary, Charente): premier bilan interdisciplinaire. Bulletin de la Société Prâhistorique Française 96, 469496.CrossRefGoogle Scholar
Delpech, F., Grayson, D.K., Rigaud, J.-P., (2000). Biostratigraphie et paléoenvironnements du début du Wérm récent d'après les grands mammifères de l'abri du Flageolet I (Dordogne, France). Paléorient 12, 97126.Google Scholar
Denys, C., Dauphin, Y., Fernández-Jalvo, Y., (1997). Apports biostratigraphiques et paléoécologiques de l'étude taphonomique des assemblages de micromammifères. Bilan et perspectives. Geobios 30, 197206.Google Scholar
Discamps, E., Jaubert, J., Bachellerie, F., (2011). Human choices and environmental constraints: deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5-3) in southwestern France. Quaternary Science Reviews 30, 27552775.Google Scholar
Duchesne, D., Gauthier, G., Berteaux, D., (2011). Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167, 967980.CrossRefGoogle ScholarPubMed
Fabre, M., Lécuyer, C., Brugal, J.-P., Amiot, R., Fourel, F., Martineau, F., (2011). Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel. Quaternary Research 75, 605613.Google Scholar
Fernández-Jalvo, Y., (1995). Small mammal taphonomy at La Trinchera de Atapuerca (Burgos, Spain). A remarkable example of taphonomic criteria used for stratigraphic correlations and palaeoenvironment interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 114, 167195.Google Scholar
Fernández-Jalvo, Y., Andrews, P., (1992). Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain. Journal of Archaeological Science 19, 407428.Google Scholar
Fernández-Jalvo, Y., Denys, C., Andrews, P.J., Williams, T., Dauphin, Y., Humphrey, L., (1998). Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution 34, 137172.Google Scholar
Fizet, M., Mariotti, A., Bocherens, H., Lange-Badré, B., Vandermeersch, B., Borel, J.P., Bellon, G., (1995). Effect of diet, physiology and climate on carbon and nitrogen stable isotopes of collagen in a Late Pleistocene anthropic palaeoecosystem: Marillac, Charente, France. Journal of Archaeological Science 22, 6779.Google Scholar
Fletcher, W.J., Sánchez-Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U.C., Naughton, F., Novenko, E., Roucoux, K., Tzedakis, P.C., (2010). Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews 29, 28392864.CrossRefGoogle Scholar
Fourel, F., Martineau, F., Lécuyer, C., Kupka, H.-J., Lange, L., Ojeimi, C., Seed, M., (2011). 18O/16O ratio measurements of inorganic and organic materials by elemental analysis–pyrolysis–isotope ratio mass spectrometry continuous-flow techniques. Rapid Communications in Mass Spectrometry 25, 26912696.Google Scholar
Fricke, H.C., O'Neil, J.R., ('Neil, 1999). The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters 170, 181196.Google Scholar
Gehler, A., Tütken, T., Pack, A., (2012). Oxygen and carbon isotope variations in a modern rodent community — implications for palaeoenvironmental reconstructions. PLoS One 7, e4953110.1371/journal.pone.0049531.CrossRefGoogle Scholar
Genty, D., Combourieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K., Mansuri, F., Ghaleb, B., Isabello, L., Dormoy, I., von Grafenstein, U., Bonelli, S., Landais, A., Brauer, A., (2010). Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quaternary Science Reviews 29, 27992820.Google Scholar
Grimes, S.T., Collinson, M.E., Hooker, J.J., Mattey, D.P., (2008). Is small beautiful? A review of the advantages and limitations of using small mammal teeth and the direct laser fluorination analysis technique in the isotope reconstruction of past continental climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 3950.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.Google Scholar
Guiot, J., Reille, M., de Beaulieu, J.L., Pons, A., (1992). Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Climate Dynamics 6, 259264.Google Scholar
Halas, S., Skrzypek, G., Meier-Augenstein, W., Pelc, A., Kemp, H.F., (2011). Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Communications in Mass Spectrometry 25, 579584.Google Scholar
Héran, M.-A., Lécuyer, C., Legendre, S., (2010). Cenozoic long-term terrestrial climatic evolution in Germany tracked by δ18O of rodent tooth phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 331342.Google Scholar
Hernández Fernández, M., (2006). Rodent paleofaunas as indicators of climatic change in Europe during the last 125,000 years. Quaternary Research 65, 308323.Google Scholar
Hillson, S., (2005). Teeth. Cambridge University Press, .Google Scholar
Iacumin, P., Longinelli, A., (2002). Relationship between δ18O values for skeletal apatite from reindeer and foxes and yearly mean δ18O values of environmental water. Earth and Planetary Science Letters 201, 213219.Google Scholar
IAEA/WMO, , (/WMO, 2006). Global network of isotopes in precipitation. The GNIP Database. (Accessible at: http://isohis.iaea.org).Google Scholar
Kohn, M.J., (1996). Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60, 48114829.Google Scholar
Kohn, M.J., Schoeninger, M.J., Valley, J.W., (1996). Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60, 38893896.CrossRefGoogle Scholar
Kolodny, Y., Luz, B., Navon, O., (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. Earth and Planetary Science Letters 64, 398404.Google Scholar
Kowalski, K., (1995). Lemmings (Mammalia, Rodentia) as indicators of temperature and humidity in the European Quaternary. Acta Zoologica Cracoviensia 38, 8594.Google Scholar
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A.C., Barrows, T.T., Cortijo, E., Duprat, J., Juggins, S., Waelbroeck, C., (2005). Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quaternary Science Reviews 24, 951998.CrossRefGoogle Scholar
Langlois, C., Simon, L., Lécuyer, C., (2003). Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters. Isotopes in Environmental and Health Studies 39, 259272.Google Scholar
Le Louarn, H., Quéré, J.P., (2003). Les rongeurs de France: faunistique et biologie. Inra-Quae, .Google Scholar
Lécuyer, C., (2004). Oxygen isotope analysis of phosphates. de Groot, P. Handbook of Stable Isotope Analytical Techniques vol. 1, Elsevier B.V., Amsterdam.482496.Google Scholar
Lécuyer, C., Grandjean, P., O'Neil, J.R., Cappetta, H., Martineau, F., (1993). Thermal excursions in the ocean at the Cretaceous — Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 235243.Google Scholar
Lécuyer, C., Grandjean, P., Sheppard, S.M.F., (1999). Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤135°C: inorganic versus biological fractionations. Geochimica et Cosmochimica Acta 63, 855862.Google Scholar
Lécuyer, C., Fourel, F., Martineau, F., Amiot, R., Bernard, A., Daux, V., Escarguel, G., Morrison, J., (2007). High-precision determination of 18O/16O ratios of silver phosphate by EA–pyrolysis–IRMS continuous flow technique. Journal of Mass Spectrometry 42, 3641.Google Scholar
Lindars, E.S., Grimes, S.T., Mattey, D.P., Collinson, M.E., Hooker, J.J., Jones, T.P., (2001). Phosphate δ18O determination of modern rodent teeth by direct laser fluorination: An appraisal of methodology and potential application to palaeoclimate reconstruction. Geochimica et Cosmochimica Acta 65, 25352548.Google Scholar
Longinelli, A., (1973). Preliminary oxygen-isotope measurements of phosphate from mammal teeth and bones. Colloques Internationals du CNRS 219, 267271.Google Scholar
Longinelli, A., (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research?. Geochimica et Cosmochimica Acta 48, 385390.Google Scholar
López-García, J.M., Blain, H.A., Cuenca-Bescós, G., Ruiz-Zapata, M.B., Dorado-Valiño, M., Gil-García, M.J., Valdeolmillos, A., Ortega, A.I., Carretero, J.M., Arsuaga, J.L., de Castro, J.M.B., Carbonell, E., (2010). Palaeoenvironmental and palaeoclimatic reconstruction of the latest Pleistocene of El Portalón site, Sierra de Atapuerca, northwestern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 453464.Google Scholar
Luz, B., Kolodny, Y., Horowitz, M., (1984). Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48, 16891693.Google Scholar
Mann, A., Maureille, B., (2007). Les Néandertaliens européens. Vandermeersch, B., Maureille, B., Les Néandertaliens, biologie et cultures. CTHS, Paris.6985.Google Scholar
Marquet, J.-C., (1993). Paléoenvironnement et chronologie des sites du domaine atlantique français d'âge Pléistocène moyen et supérieur d'après l'étude des rongeurs. Les Cahiers de la Claise Supplément 2, Tours, .Google Scholar
Maureille, B., Mann, A.E., Beauval, C., Bordes, J.-G., Bourguignon, L., Costamagno, S., Couchoud, I., Lacrampe-Cuyaubère, F., Laroulandie, V., Marquet, J.-C., Meignen, L., Texier, J.-P., Vandermeersch, B., (2007). Le gisement moustérien des Pradelles (Marillac-le-Franc, Charente): passé, présent, futur. Evin, J., Un siècle de construction du discours scientifique en préhistoire. Volume III. Congrès du Centenaire de la S.P.F., Avignon 2004 Société Préhistorique Française, Paris.249261.Google Scholar
Maureille, B., Mann, A., Beauval, C., Bordes, J.G., Bourguignon, L., Costamagno, S., Couchoud, I., Fauquignon, J., Garralda Benajes, M.D., Geigl, E.M., Grün, R., Guibert, P., Lacrampe, F., Laroulandie, V., Marquet, J.C., Meignen, L., Mussini, C., Rendu, W., Royer, A., Seguin, G., Texier, J.-P., (2010a). Les Pradelles (Marillac-le-Franc, Charente). Fouilles 2001–2007: nouveaux r"sultats et synth"se. Buisson-Catil, J., Primault, J., Préhistoire entre Vienne et Charente. Hommes et Sociétés du Paléolithique. Association des Publications Chauvinoises, Chauvigny.145162.Google Scholar
Maureille, B., Mann, A., Beauval, C., Bordes, J.G., Bourguignon, L., Costamagno, S., Couchoud, I., Fauquignon, J., Garralda Benajes, M.D., Geigl, E.M., Grün, R., Guibert, P., Lacrampe, F., Laroulandie, V., Marquet, J.C., Meignen, L., Mussini, C., Rendu, W., Royer, A., Seguin, G., Texier, J.-P., Vandermeersch, B., (2010b). Le gisement moustérien des Pradelles (Marillac-le-Franc, Charente): bilan de six années de fouilles (2002 à 2007). 39, Association des Archéologues de Poitou-Charentes, 1118.Google Scholar
Meignen, L., Costamagno, S., Beauval, C., Bourguignon, L., Vandermeersch, B., Maureille, B., (2007). Gestion des ressources lithiques au Paléolithique moyen dans une halte de chasse spécialisée sur le renne: Les Pradelles (Marillac-Le-Franc, Charente). Moncel, M.-H., Moigne, A.-M., Arzarello, M., Peretto, C., Aires d'approvisionnement en matières premières et aires d'approvisionnement en ressources alimentaires: approche intégrée des comportements. British Archaeological Reports — International Series; 1725/Actes du 15ème Congrès UISPP: WS23 Archaeopress, Oxford.127139.Google Scholar
Montuire, S., Michaux, J., Legendre, S., Aguilar, J.-P., (1997). Rodents and climate. 1. A model for estimating past temperatures using arvicolids (Mammalia: Rodentia). Palaeogeography, Palaeoclimatology, Palaeoecology 128, 187206.Google Scholar
Mussini, C., (2011). Les restes humains moustériens des Pradelles (Marillac-le-Franc, Charente, France): étude morphométrique et réflexions sur un aspect comportemental des Néandertaliens. University of Bordeaux 1, (PhD).Google Scholar
Navarro, N., Lécuyer, C., Montuire, S., Langlois, C., Martineau, F., (2004). Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62, 172182.Google Scholar
Pflaumann, U., Duprat, J., Pujol, C., Labeyrie, L., (1996). SIMMAX: a modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11, 1535.Google Scholar
Piveteau, J., (1957). Traité de Paléontologie. T.7. Primates-Paléontologie Humaine. Vers la forme humaine. Le problème biologique de l'Homme. Les époques de l'intelligence. Masson et Cie, Paris.Google Scholar
Podlesak, D.W., Torregrossa, A.-M., Ehleringer, J.R., Dearing, M.D., Passey, B.H., Cerling, T.E., (2008). Turnover of oxygen and hydrogen isotopes in the body water, CO 2, hair, and enamel of a small mammal. Geochimica et Cosmochimica Acta 72, 1935.CrossRefGoogle Scholar
Ragout, A., Balout, L., (1942). Enquête sur le gisement moustérien de Marillac (Charente). Bulletin de la Société Préhistorique Fran"aise 105113.CrossRefGoogle Scholar
Reille, M., de Beaulieu, J.L., (1990). Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France). Palaeogeography, Palaeoclimatology, Palaeoecology 80, 3548.Google Scholar
Rendu, W., Costamagno, S., Meignen, L., Soulier, M.-C., (2012). Monospecific faunal spectra in Mousterian contexts: implications for social behavior. Quaternary International 247, 5058.CrossRefGoogle Scholar
Royer, A., Lécuyer, C., Montuire, S., Amiot, R., Legendre, S., Cuenca-Bescós, G., Jeannet, M., Martineau, F., (2013). What does the oxygen isotope composition of rodent teeth record?. Earth and Planetary Science Letters 361, 258271.Google Scholar
Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., (1992). Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258, 981985.Google Scholar
Sánchez-Goñi, M.F., Cacho, I., Turon, J., Guiot, J., Sierro, F., Peypouquet, J., Grimalt, J., Shackleton, N., (2002). Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, 95105.Google Scholar
Sánchez-Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., (2008). Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151.Google Scholar
Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., McManus, J.F., (2002). The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quaternary Science Reviews 21, 331342.Google Scholar
Stahl, P.W., (1996). The recovery and interpretation of microvertebrate bone assemblages from archaeological contexts. Journal of Archaeological Method and Theory 3, 3175.Google Scholar
Texier, J.-P., (2000). A propos des processus de formation des sites préhistoriques. Paléorient 12, 379386.Google Scholar
Texier, J.-P., Couchoud, I., (2007). L'analyse géologique et stratigraphique. Maureille, B., Beauval, C., Bordes, J.-G., Bourguignon, L., Costamagno, S., Geigl, E.-M., Champlot, S., Grün, R., Guibert, P., Lacrampe, F., Laroulandie, V., Mann, A., Meignen, L., Royer, A., Texier, J.-P., Couchoud, I., Seguin, G., Vandermeersch, B., Les Pradelles. Rapport de fouilles programmées triennales (2005–2007). 6682.Google Scholar
Tütken, T., Furrer, H., Vennemann, T.W., (2007). Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: implications for the Late Pleistocene climate, environment, and diet. Quaternary International 164–165, 139150.Google Scholar
Vandermeersch, B., (1980). Marillac-le-Franc. Gallia Préhistoire 23, 302303.Google Scholar
Villa, P., Sánchez-Goñi, M.F., Cuenca-Bescós, G., Grün, R., Ajas, A., García Pimienta, J.C., Lees, W., (2010). The archaeology and paleoenvironment of an Upper Pleistocene hyena den: an integrated approach. Journal of Archaeological Science 37, 919935.Google Scholar
Voelker, A.H.L., (2002). Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, 11851212.CrossRefGoogle Scholar
von Grafenstein, U., Erlenkeuser, H., Muller, J., Trimborn, P., Alefs, J., (1996). A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ18O p –air temperature relation into the past. Geochimica et Cosmochimica Acta 60, 40254036.Google Scholar
Wainer, K., Genty, D., Blamart, D., Hoffmann, D., Couchoud, I., (2009). A new stage 3 millennial climatic variability record from a SW France speleothem. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 130139.Google Scholar
Yurtsever, Y., (1975). Worldwide survey of stable isotopes in precipitation. Isotope Hydrology Section report. International Atomic Energy Agency, Vienna.140.Google Scholar
Zazzo, A., Lécuyer, C., Mariotti, A., (2004). Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta 68, 112.Google Scholar