Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T16:42:14.219Z Has data issue: false hasContentIssue false

The late Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating

Published online by Cambridge University Press:  25 September 2012

Ines Röhringer
Affiliation:
University of Bayreuth, Bayreuth, Germany
Roland Zech*
Affiliation:
Geological Institute, ETH Zurich, Zurich, Switzerland
Uwe Abramowski
Affiliation:
University of Bayreuth, Bayreuth, Germany
Pjotr Sosin
Affiliation:
Tajik Academy of Agriculture, Dushanbe, Tajikistan
Ala Aldahan
Affiliation:
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Peter W. Kubik
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Zurich, Switzerland
Ludwig Zöller
Affiliation:
University of Bayreuth, Bayreuth, Germany
Wolfgang Zech
Affiliation:
University of Bayreuth, Bayreuth, Germany
*
Corresponding author. Email Address:[email protected]

Abstract

Glacial chronologies from the Pamir may not only provide insights into past changes in temperature, but also into past changes in precipitation related to the northern-hemispheric westerlies and the monsoonal circulation. We present 18 new exposure ages from the Bogchigir Valleys that complement and refine our previous studies in these valleys. The most extensive dated glaciation in the area occurred ~ 100 ka, during Marine Oxygen Isotope Stage (MIS) 5, and indicates increased precipitation likely from both the westerlies and the monsoonal circulation. A subsequent glacier advance, which deposited characteristic ‘chukur’ moraine lobes, occurred at ~ 80–75 ka. Circumstantial evidence points to glacial advances at ~ 65 and 40 ka, the latter likely also documenting increased monsoonal moisture supply during MIS 3. Less extensive glacial advances occurred during MIS 2 at ~ 28 and 24 ka and reflect the aridization trend during the course of the last glacial cycle. Deglaciation started ~ 21 ka, interrupted by minor stillstands or readvances at ~ 16 and 12 ka. Local calibration sites and glacier-climate modeling would be very helpful to reduce the systematic methodological uncertainties (still at least 10%) and to draw more detailed paleoclimatic conclusions.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowski, U., Bergau, A., Seebach, D., Zech, R., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. Pleistocene glaciations of Central Asia: results from Be-10 surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews 25, (2006). 10801096.CrossRefGoogle Scholar
Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., and Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology 21, (2001). 535556.CrossRefGoogle Scholar
Aizen, V.B., Mayewski, P.A., Aizen, E.M., Joswiak, D.R., Surazakov, A.B., Kaspari, S., Grigholm, B., Krachler, M., Handley, M., and Finaev, A. Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. Journal of Glaciology 55, (2009). 275291.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 8, (2008). 174195.CrossRefGoogle Scholar
Benn, D.I., and Lehmkuhl, F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65, (2000). 1529.CrossRefGoogle Scholar
Benn, D.I., and Owen, L.A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion. Journal of the Geological Society 155, (1998). 353363.CrossRefGoogle Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.CrossRefGoogle Scholar
Bohner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, (2006). 279295.CrossRefGoogle Scholar
Briner, J.P., Kaufman, D.S., Manley, W.E., Finkel, R.C., and Caffee, M.W. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, (2005). 11081120.CrossRefGoogle Scholar
Burtman, V.S., Molnar, P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America: Special Paper 281, (1993). 76 p.Google Scholar
Chevalier, M.-L., Hilley, G., Tapponnier, P., Van Der Woerd, J., Liu-Zeng, J., Finkel, R.C., Ryerson, F.J., Li, H., and Liu, X. Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quaternary Science Reviews 30, (2011). 528554.CrossRefGoogle Scholar
Herzschuh, U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, (2006). 163178.CrossRefGoogle Scholar
Heyman, J., Stroeven, A.P., Harbor, J.M., and Caffee, M.W. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, (2011). 7180.CrossRefGoogle Scholar
Ivy-Ochs, S., (1996). The dating of rock surfaces with 10Be, 26Al and 36Cl, with examples from Antarctic and the Swiss Alps. Diss.ETH No.11763, Zuerich., 197 pp.Google Scholar
Karabanov, E.B., Prokopenko, A.A., Williams, D.F., and Colman, S.M. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d. Quaternary Research 50, (1998). 4655.Google Scholar
Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., and Stone, J. Late Quaternary glaciation in the Kyrgyz Tien Shan. Quaternary Science Reviews 27, (2008). 846866.CrossRefGoogle Scholar
Kubik, P., and Ivy-Ochs, S. A re-evaluation of the 0–10 ka 10Be production rate for exposure dating obtained from the Köfels (Austria) landslide. Nuclear Instruments and Methods in Physics Research B 223–224, (2004). 618622.CrossRefGoogle Scholar
Kull, C., Imhof, S., Grosjean, M., Zech, R., and Veit, H. Late Pleistocene glaciation in the Central Andes: temperature versus humidity control — a case study from the eastern Bolivian Andes (17°S) and regional synthesis. Global and Planetary Change 60, (2008). 148164.CrossRefGoogle Scholar
Lal, D. Cosmic-ray labeling of erosion surfaces — in situ nuclide production-rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.CrossRefGoogle Scholar
Lifton, N.A. Potential resolution of discrepancies between scaling models for in situ cosmogenic nuclide production rates. INQUA meeting, abstract #1554. (2011). Bern Google Scholar
Narama, C., Kondo, R., Tsukamoto, S., Kajiura, T., Duishonakunov, M., and Abdrakhmatov, K. Timing of glacier expansion during the Last Glacial in the inner Tien Shan, Kyrgyz Republic by OSL dating. Quaternary International 199, (2009). 147156.CrossRefGoogle Scholar
Owen, L.A. Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quaternary Science Reviews 28, (2009). 21502164.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Caffee, M.W., and Gualtieri, L. Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geological Society of America Bulletin 114, (2002). 593604.2.0.CO;2>CrossRefGoogle Scholar
Owen, L.A., Caffee, M.W., Finkel, R.C., and Seong, Y.B. Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Science 23, (2008). 513531.CrossRefGoogle Scholar
Owen, L.A., Chen, J., Hedrick, K.A., Caffee, M.W., Robinson, A.C., Schoenbohm, L.M., Yuan, Z., Li, W., Imrecke, D.B., and Liu, J. Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir. Quaternary Science Reviews 47, (2012). 5672.CrossRefGoogle Scholar
Putkonen, J., and Swanson, T. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, (2003). 255261.CrossRefGoogle Scholar
Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vandergoes, M., Denton, G.H., Kaplan, M.R., Finkel, R.C., Schwartz, R., Goehring, B.M., and Kelley, S.E. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quaternary Geochronology 5, (2010). 392409.CrossRefGoogle Scholar
Rupper, S., and Roe, G. Glacier changes and regional climate: a mass and energy balance approach. Journal of Climate 21, (2008). 53845401.CrossRefGoogle Scholar
Sato, T., Yasuda, H., Niita, K., Endo, A., and Sihver, L. Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiation Research 170, (2008). 244259.Google ScholarPubMed
Scherler, D., Bookhagen, B., Strecker, M.R., Von Blanckenburg, F., and Rood, D. Timing and extent of late Quaternary glaciation in the western Himalaya constrained by Be-10 moraine dating in Garhwal, India. Quaternary Science Reviews 29, (2010). 815831.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Yi, C.L., and Finkel, R.C. Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geological Society of America Bulletin 121, (2009). 348365.CrossRefGoogle Scholar
Shi, Y.F., Yu, G., Liu, X.D., Li, B.Y., and Yao, T.D. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 169, (2001). 6983.Google Scholar
Staiger, J., Gosse, J., Toracinta, R., Oglesby, B., Fastook, J., and Johnson, J.V. Atmospheric scaling of cosmogenic nuclide production: climate effect. Journal of Geophysical Research 112, B02205 (2007). 18.CrossRefGoogle Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, Solid Earth 105, (2000). 23,75323,759.CrossRefGoogle Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M. et al. Late quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, (2004). 12291271.CrossRefGoogle Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosleythompson, E., Lin, P.N., Beer, J., Synal, H.A., Coledai, J., and Bolzan, J.F. Tropical climate instability: the last glacial cycle from a Qinghai–Tibetan ice core. Science 276, (1997). 18211825.CrossRefGoogle Scholar
UNEP Vital maps and graphics on climate change, Tajikistan. www.grida.no/enrin/htmls/tadjik/vitalgraphics/eng/html/climate.htm(2002). Google Scholar
Wang, J., Zhou, S., Zhao, J., Zheng, J., and Guo, X. Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern Pamir, China. Science China Earth Sciences 54, (2011). 591602.CrossRefGoogle Scholar
Weiers, S. Zur Klimatplogie des NW-Karakorum und angrenzender Gebiete. Bonner Geographische Abhandlungen 92, (1995). 156 Google Scholar
Wissmann, H.V. Die heutige Vergletscherung und Schneegrenze in Hochasien. Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 14, (1959). 306 Google Scholar
Zech, R. A Late Pleistocene glacial chronology from the Kitschi-Kurumdu Valley, Tien Shan (Kyrgyzstan), based on 10Be surface exposure dating. Quaternary Research 77, (2012). 281288.CrossRefGoogle Scholar
Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic Be-10 exposure ages. Quaternary Research 64, (2005). 212220.CrossRefGoogle Scholar
Zech, R., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains from surface exposure dating. Earth and Planetary Science Letters 237, (2005). 453461.CrossRefGoogle Scholar
Zech, W., Zech, R., Zech, M., Leiber, K., Dippold, M., Frechen, M., Bussert, R., and Andreev, A. Obliquity forcing of Quaternary glaciation and environmental changes in NE Siberia. Quaternary International 234, (2011). 133145.CrossRefGoogle Scholar