Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T16:59:50.700Z Has data issue: false hasContentIssue false

Late Neanderthals at Jarama VI (central Iberia)?

Published online by Cambridge University Press:  20 January 2017

Martin Kehl*
Affiliation:
University of Cologne, Institute of Geography, Albertus-Magnus-Platz, 50923 Cologne, Germany
Christoph Burow
Affiliation:
Área de Prehistoria, Departamento de Ciencias Históricas y Geografía, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001 Burgos, Spain
Alexandra Hilgers
Affiliation:
University of Cologne, Institute of Geography, Albertus-Magnus-Platz, 50923 Cologne, Germany
Marta Navazo
Affiliation:
Área de Prehistoria, Departamento de Ciencias Históricas y Geografía, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001 Burgos, Spain Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca s/n, E-09002 Burgos, Spain
Andreas Pastoors
Affiliation:
Neanderthal Museum, Talstr. 300, 40822 Mettmann, Germany
Gerd-Christian Weniger
Affiliation:
Neanderthal Museum, Talstr. 300, 40822 Mettmann, Germany University of Cologne, Institute of Prehistoric Archaeology, Albertus-Magnus-Platz, 50923 Cologne, Germany
Rachel Wood
Affiliation:
Research School of Earth Sciences, The Australian National University, 1 Mills Road, Canberra, ACT 0200, Australia
Jesús F. Jordá Pardo
Affiliation:
Laboratorio de Estudios Paleolíticos, Departamento de Prehistoria y Arqueología, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey, 7. Ciudad Universitaria, E-28040 Madrid, Spain
*
*Corresponding author. E-mail addresses:[email protected] (M. Kehl), [email protected] (M. Navazo), [email protected] (A. Pastoors), [email protected] (G.-C. Weniger), [email protected] (R. Wood), [email protected] (J.F. Jordá Pardo).

Abstract

Previous geochronological and archaeological studies on the rock shelter Jarama VI suggested a late survival of Neanderthals in central Iberia and the presence of lithic assemblages of Early Upper Paleolithic affinity. New data on granulometry, mineralogical composition, geochemical fingerprints and micromorphology of the sequence corroborate the previous notion that the archaeological units JVI.2.1 to JVI.2.3 are slackwater deposits of superfloods, which did not experience significant post-depositional changes, whereas the artifact-rich units JVI.3 and JVI.1 mainly received sediment inputs by sheetwash and cave spall. New AMS radiocarbon measurements on three samples of cut-marked bone using the ultrafiltration technique yielded ages close to, or beyond, the limit of radiocarbon dating at ca. 50 14C ka BP, and hence suggest much higher antiquity than assumed previously. Furthermore, elevated temperature post-IR IRSL luminescence measurements on K feldspars yielded burial ages for subunits JVI.2.2 and JVI.2.3 between 50 and 60 ka. Finally, our reappraisal of the stone industry strongly suggests that the whole sequence is of Mousterian affinity. In conclusion, Jarama VI most probably does not document a late survival of Neanderthals nor an Early Upper Paleolithic occupation in central Iberia, but rather indicates an occupation breakdown after the Middle Paleolithic.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adán Alvarez, G., Arribas Herrera, A., Barbadillo, J., Cervera García, J., Estrada García, R., García Valero, M.A., Jordá Pardo, J.F., Pastor Muñoz, J., Sánchez Chillón, B., Sánchez Marco, A., Sanchiz, B., Sesé, C., (1995). Prospecciones y excavaciones arqueológicas en el Alto Valle del Jarama (Valdesotos, Guadalajara, Castilla-La Mancha). Balbín, R., de Valiente, J., Musat, M.T. Arqueología en Guadalajara. Patrimonio Histírico - Arqueología Castilla - La Mancha 12, Junta de Comunidades de Castilla La Mancha, Toledo.111124.Google Scholar
Aitken, M.J., Smith, B.W., (1988). Optical dating: recuperation after bleaching. Quaternary Science Reviews 7, 387393.CrossRefGoogle Scholar
Alonso, A., Garzón, G., (1996). The Jarama River. Benito, G., Pérez-González, A., Machado, M.J., de Alba, S. Palaeohydrology in Spain: Field Excursion Guide. Second International Meeting on Global Continenal Palaeohydrology, GLOCOPH '96. 2134.Google Scholar
Atlas Climático Ibérico, (2011). Temperatura del aire y precipitación (1971-2000). Agencia Estatal de Meteorología de España and Departamento de Meteorologia e Clima, Instituto de Meteorologia de Portugal 79 pp.Google Scholar
Beckmann, Th., (1997). Präparation bodenkundlicher Dünnschliffe für mikromorphologische Untersuchungen. Hohenheimer Bodenkundliche Hefte 40, 89103.Google Scholar
Benito, G., Sánchez-Moya, Y., Sopeña, A., (2003). Sedimentology of high-stage flood deposits of the Tagus River, Central Spain. Sedimentary Geology 157, 107132.CrossRefGoogle Scholar
Bicho, N., Carvalho, A.F., González-Sainz, C., Sanchidrián, J.L., Villaverde, V., Straus, L.G., (2007). The Upper Paleolithic Rock Art of Iberia. Journal of Archaeological Method and Theory 14, 81151.Google Scholar
Bird, M.I., Ayliffe, L.K., Fifield, L.K., Turney, C.S.M., Cresswell, R.G., Barrows, T.T., David, B., (1999). Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41, 127140.Google Scholar
Blott, S.J., Pye, K., (2001). Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12371248.Google Scholar
Brock, F., Higham, T., Ramsey, C.B., (2010a). Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37, 855865.CrossRefGoogle Scholar
Brock, F., Higham, T., Ditchfield, P., Ramsey, C.B., (2010b). Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103112.CrossRefGoogle Scholar
Brock, F., Wood, R., Higham, T.F.G., Ditchfield, P., Bayliss, A., Bronk Ramsey, C., (2012). The reliability of nitrogen content (%N) as an indicator of collagen preservation suitable for radiocarbon dating. Radiocarbon 54, 879886.CrossRefGoogle Scholar
Bronk Ramsey, C., (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bronk Ramsey, C.B., Higham, T.F.G., Leach, P., (2004). Towards high-precision AMS: progress and limitations. Radiocarbon 46, 1724.CrossRefGoogle Scholar
Buylaert, J.P., Murray, A.S., Thomsen, K.J., Jain, M., (2009). Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44, 560565.Google Scholar
Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Cacho, C., Martos, J.A., Jordá, J., Yravedra, J., Avezuela, B., Valdivia, J., Martín, I., (2010). El Paleolítico superior en el interior de la Península Ibérica. Revisiín crítica y perspectivas de futuro. El Paleolítico superior peninsular, Novedades del, siglo XXI. 115136.Google Scholar
Carbonell, E., Márquez, B., Mosquera, M., Ollé, A., Rodríguez, X.P., Sala, R., Vergés, J.M., (1999). El Modo 2 en Galería. Análisis de la industria lítica y sus procesos técnicos. Atapuerca: Ocupaciones humanas y paleoecología del yacimiento de Galería. Arqueología de Castilla y León 7, 299352.(Memorias).Google Scholar
Delibes de Castro, G., Díez Martín, F., (2006). Una Meseta desolada? Estado actual de la investigación sobre el Paleolítico Superior en las regiones interiores de la Península Ibírica. Delibes de Castro, En G., Díez Martín, F. El Paleolítico Superior en la Meseta Norte española. Studia Archaeologica 94, Universidad de Valladolid, Fundación Duques de Soria, Valladolid.1140.Google Scholar
Díez, C., García, M.A., Gil, E., Jordí Pardo, J.F., Ortega, A.I., Sánchez, B., Sánchez, A., (1988–89). La Cueva de Valdegoba (Burgos). Primera campaña de excavaciones. Zephyrvs XLI-XLII, 5674.Google Scholar
Díez, C., Alonso, R., Bengoechea, A., Colina, A., Jordá, J.F., Navazo, M., Ortiz, J.E., Pérez, S., Torres, T., (2008). El paleolítico medio en el valle del Arlanza (Burgos). Los sitios de la Ermita, Millán y la Mina. Revista Cuaternario y Geomorfología 22, 135157.Google Scholar
Duller, G.A.T., (2008). Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589612.Google Scholar
Duller, G.A.T., Bítter-Jensen, L., Murray, A.S., Truscott, A.J., (1999). Single grain laser luminescence (SGLL) measurements using a novel automated reader. Nuclear Instruments and Methods in Physics Research B 155, 506514.CrossRefGoogle Scholar
Dunne, J., Elmore, D., Muzikar, P., (1999). Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 311.Google Scholar
Finlayson, C., Carríon, J.S., (2007). Rapid ecological turnover and its impact on Neanderthal and other human populations. Trends in Ecology & Evolution 22, 213222.Google Scholar
Finlayson, C., Giles Pacheco, F., Rodríguez-Vidal, J., Fa, D.A., Gutierrez López, J.M., Santiago Pírez, A., Finlayson, G., Allueé, E., Baena Preysler, J., Cáceres, I., Carrión, J.S., Fernández Jalvo, Y., Gleed-Owen, C.P., Jimenez Espejo, F., López, P., López Sáez, J.A., Riquelme Cantal, J.A., Sánchez Marco, A., Giles Guzman, F., Brown, K., Fuentes, N., Valarino, C.A., Villalpando, A., Stringer, C.B., Martinez Ruiz, F., Sakamoto, T., (2006). Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850853.Google Scholar
Fuchs, M., Lang, A., (2001). OSL dating of coarse-grain fluvial quartz using single-aliquot protocols on sediments from NE Peloponnese, Greece. Quaternary Science Reviews 20, 783787.Google Scholar
Galbraith, R.F., (2003). A simple homogeneity test for estimates of dose obtained using OSL. Ancient TL 21, 7577.Google Scholar
Galbraith, R.F., Roberts, (2012). Statistical aspects of equivalent dose and error calculation and display of OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 127.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., (1999). Optical dating of single and multiple grains of Quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.Google Scholar
Godfrey-Smith, D.L., Huntley, D.J., Chen, W.H., (1988). Optically dating studies of quartz and feldspar sediment extracts. Quaternary Science Reviews 7, 373380.Google Scholar
González-Sampériz, P., Leroy, S.A.G., Carrión, J.S., Fernández, S., García-Antón, M., Gil-García, M.J., Uzquiano, P., Valero-Garcís, B., Figueiral, I., (2010). Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Review of Palaeobotany and Palynology 162, 427457.CrossRefGoogle Scholar
Higham, T., (2011). European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85, 235249.CrossRefGoogle Scholar
Higham, T., Brock, F., Peresani, M., Broglio, A., Wood, R., Douka, K., (2009). Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28, 12571267.Google Scholar
Higham, T., Basell, L., Jacobi, L., Wood, R., Bronk Ramsey, C., Conard, N.J., (2012). Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geisenklosterle. Journal of Human Evolution 62, 664676.Google Scholar
Hublin, J.-J., Barroso, C., Medina, P., Fontugne, M., Reyss, J.-L., (1995). The Mousterian Site of Zafarraya (Andalucia, Spain): dating and implications on the paleolithic peopling processes of Western Europe. Comptes-Rendus de l'Acadímie des Sciences de Paris. 321, 931937.Google Scholar
Huntley, D.J., Baril, M.R., (1997). The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.Google Scholar
Huntley, D.J., Lamothe, M., (2001). Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.Google Scholar
Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., (1985). Optical dating of sediments. Nature 313, 105107.Google Scholar
ITGE 1990. (1990). Mapa Geolígico de Espaía. Escala 1:50.000. 485 (20-19) Valdepeías de la Sierra. Instituto Tecnolígico Geominero de Espaía, Madrid.Google Scholar
Jennings, R., Finlayson, C., Fa, D., Finlayson, G., (2011). Southern Iberia as a refuge for the last Neanderthal populations. Journal of Biogeography 38, 18731885.Google Scholar
Jordí Pardo, J.F., (1993). El poblamiento prehistírico en el sector sur-oriental del Sistema Central peninsular (Alto Valle del Jarama, Guadalajara, Espaía). Trabalhos de Antropologia e Etnologia 33, 99117.Google Scholar
Jordí Pardo, J.F., (2001). Dataciones isotípicas del yacimiento del Pleistoceno Superior de Jarama VI (alto valle del jarama, Guadalajara, Espaía) y sus implicaciones cronoestratigríficas. Bíchner, D. Studien in memoriam Wilhelm Schíle. Rahden/Westfalen, 225235.Google Scholar
Jordí Pardo, J.F., (2007). The wild river and the last Neanderthals: a palaeoflood in the geoarchaeological record of the Jarama Canyon (Central Range, Guadalajara province, Spain). Geodinamica Acta 20, 209217.CrossRefGoogle Scholar
Kars, R.H., Wallinga, J., Cohen, K.M., (2008). A new approach towards anomalous fading correction for feldspar IRSL dating tests on samples in field saturation. Radiation Measurements 43, 786790.Google Scholar
Lorenzo, C., Navazo, M., D"ez, J.C., Sesí, C., Arceredillo, D., Jordí Pardo, J.F., (2012). New human fossil to the last Neanderthals in central Spain (Jarama VI, Valdesotos, Guadalajara, Spain). Journal of Human Evolution 62, 6 720725.Google Scholar
Lowick, S.E., Trauerstein, M., Preusser, F., (2012). Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8, 3340.Google Scholar
Maroto, J., Vaquero, M., Arrizabalaga, B., Baena, J., Baquedano, E., Jordí, J., Juli", R., Montes, R., van der Plicht, J., Rasines, P., Wood, R., (2012). Current issues in late Middle Palaeolithic chronology: New assessments from Northern Iberia: the Neanderthal home: spatial and social behaviours. Quaternary International 247, 1525.Google Scholar
Martín-Ramos, J.D., (2004). Xpowder. A software package for powder x-ray diffraction analysis. (www.xpowder.com).Google Scholar
Moreno, A., Gonzílez-Sampíriz, P., Morellín, M., Valero-Garcís, B.L., Fletcher, W.J., (2012). Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quaternary Science Reviews 36, 139153.Google Scholar
Moure, J.A., García-Soto, Y.E., (2000). Economie et utilisation du territoire pendant le Moustírien de la vallíe moyenne de l'Arlanza (Burgos, Espagne). Anthropologie et Pr"histoire 11, 186189.Google Scholar
Muíoz Muíoz, J., Aldeanueva, R.A., Rey Arnaiz, J.M., (1989). El clima de la provincial de Guadalajara. Paralelo 37, 227251.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Murray, A.S., Wintle, A.G., (2003). The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.Google Scholar
Navazo, M., Diíz, J.C., (2008). Prado Vargas y la variabilidad tecnolígica a finales del Paleolítico medio en la Meseta norte. Treballs d'Arqueología 14, 121139.Google Scholar
Olley, J.M., Caitcheon, G.G., Roberts, R.G., (1999). The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30, 207217.CrossRefGoogle Scholar
Ortiz, J.E., Moreno, L., Torres, T., Vegas, J., Ruiz-Zapata, B., García-Cortís, B., Galín, L., Pírez-Gonzílez, A., (2013). A 220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis. Organic Geochemistry 55, 8597.Google Scholar
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Preusser, F., Andersen, B.G., Denton, G.H., Schlíchter, C., (2005). Luminescence chronology of Late Pleistocene glacial deposits in North Westland, New Zealand. Quaternary Science Reviews 24, 22072227.Google Scholar
Rebollo, N.R., Weiner, S., Brock, F., Meignen, L., Goldberg, P., Belfer-Cohen, A., Bar-Yosef, O., Boaretto, E., (2011). New radiocarbon dating of the transition from the Middle to the Upper Paleolithic in Kebara Cave, Israel. Journal of Archaeological Science 38, 24242433.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.A., Kromer, B., Mccormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van Der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 59, 11111150.Google Scholar
Schmidt, I., Bradtmíller, M., Kehl, M., Pastoors, A., Tafelmaier, Y., Weninger, B., Weniger, G.-C., (2012). Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene: temporal and spatial corridors of Homo sapiens sapiens population dynamics during the Late Pleistocene and Early Holocene. Quaternary International 274, 179204.Google Scholar
Stoops, G., (2003). Guidelines for the analysis and description of soil and regolith thin sections. Soil Science Society of America. Madison, WI.(184 pp.).Google Scholar
Thiel, C., Buylaert, J.P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., (2011). Luminescence dating of the Stratzing loess profile (Austria): testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234, 2331.Google Scholar
Thomsen, K.J., Murray, A.S., Jain, M., Bítter-Jensen, L., (2008). Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 14741486.Google Scholar
Thorndycraft, V.R., Benito, G., (2006). Late Holocene fluvial chronology of Spain: the role of climatic variability and human impact. Catena 66, 3441.Google Scholar
Van Klinken, G.J., (1999). Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26, 687695.Google Scholar
Van Vliet Lanoí, B., (2010). Frost Action. Stoops, G., Marcelino, V., Mess, F. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam.81108.Google Scholar
Vegas, J., Ruiz-Zapata, B., Ortiz, J.E., Galín, L., Torres, T., García-Cortís, B., Gil-García, M.J., Pírez-Gonzílez, A., Gallardo-Millín, J.L., (2010). Identification of arid phases during the last 50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain). Journal of Quaternary Sciences 25, 10511062.Google Scholar
Visocekas, R., (1979). Miscellanous aspects of artificial TL of calcite: emission spectra athermal detrapping and anomalous fading. PACT 3, 258265.Google Scholar
Wallinga, J., Murray, A.S., Wintle, A.G., (2000). The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32, 529533.Google Scholar
Wallinga, J., Murray, A.S., Duller, G.A.T., Tírnqvist, T.E., (2001). Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits. Earth and Planetary Science Letters 193, 617630.Google Scholar
Wintle, A.G., (1973). Anomalous fading of thermoluminescence in mineral samples. Nature 245, 143144.Google Scholar
Wintle, A.G., (1997). Luminescence dating: laboratory procedures and protocols. Radiation Measurements 27, 769817.Google Scholar
Wintle, A.G., Murray, A.S., (2006). A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.Google Scholar
Wood, R.E., Higham, T.F.G., Bronk Ramsey, C., (2010). Refining background corrections for radiocarbon dating of bone collagen at ORAU. Radiocarbon 52, 600611.Google Scholar
Wood, R.E., Barroso, C., Caparros, M., Jorda, J.F., Galvan Santos, B., Higham, T.F.G., (2013). Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences 110, 27812786.Google Scholar
Woodward, J., Hamlin, R., Macklin, M., Karkanas, P., Kotjabopoulou, E., (2001). Quantitative sourcing of slackwater deposits at Boila rockshelter: a record of lateglacial flooding and Paleolithic settlement in the Pindus Mountains, Northwest Greece. Geoarchaeology 16, 501536.Google Scholar
Zilhío, J., (2006). Chronostratigraphy of the Middle-to-upper Paleolithic transition in the Iberian peninsula. Pyrenae 37, 784.Google Scholar
Zilhío, J., Cardoso, J.L., Pike, A.W.G., Weninger, B., (2011). Gruta Nova da Columbeira (Bombarral, Portugal): Site stratigraphy, age of the Mousterian sequence, and implications for the timing of Neandertal extinction in Iberia. Quartír 58, 93112.Google Scholar
Supplementary material: File

Kehl et al. Supplementary Material

Supplementary Material

Download Kehl et al. Supplementary Material(File)
File 17.1 KB
Supplementary material: File

Kehl et al. Supplementary Material

Table S1

Download Kehl et al. Supplementary Material(File)
File 12.8 KB
Supplementary material: File

Kehl et al. Supplementary Material

Table S2

Download Kehl et al. Supplementary Material(File)
File 17.6 KB
Supplementary material: File

Kehl et al. Supplementary Material

Table S3

Download Kehl et al. Supplementary Material(File)
File 13.9 KB
Supplementary material: File

Kehl et al. Supplementary Material

Table S4

Download Kehl et al. Supplementary Material(File)
File 12.2 KB
Supplementary material: File

Kehl et al. Supplementary Material

Table S5

Download Kehl et al. Supplementary Material(File)
File 13.9 KB
Supplementary material: PDF

Kehl et al. Supplementary Material

Figure S1

Download Kehl et al. Supplementary Material(PDF)
PDF 821.2 KB
Supplementary material: PDF

Kehl et al. Supplementary Material

Figure S2

Download Kehl et al. Supplementary Material(PDF)
PDF 253.9 KB
Supplementary material: PDF

Kehl et al. Supplementary Material

Figure S3

Download Kehl et al. Supplementary Material(PDF)
PDF 693.8 KB