Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T13:44:49.214Z Has data issue: false hasContentIssue false

Last Interglacial Climates

Published online by Cambridge University Press:  20 January 2017

George J. Kukla
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York, 10964, [email protected]
Michael L. Bender
Affiliation:
Department of Geosciences, Princeton University, Princeton, New Jersey, 08544
Jacques-Louis de Beaulieu
Affiliation:
Laboratoire de Botanique Historique et Palynologie, URA CNRS D1152, Faculte des Sciences et Techniques St. Jérôme, Boı̂te 451, F-13397 Marseille Cedex 20, France
Gerard Bond
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York, 10964
Wallace S. Broecker
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York, 10964
Piet Cleveringa
Affiliation:
Netherlands Institute of Applied Geoscience TNO, National Geological Survey, P.O. Box 80015, 3508 TA Utrecht, The Netherlands
Joyce E. Gavin
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York, 10964
Timothy D. Herbert
Affiliation:
Department of Geological Sciences, Brown University, Providence, Rhode Island, 02912
John Imbrie
Affiliation:
Department of Geological Sciences, Brown University, Providence, Rhode Island, 02912
Jean Jouzel
Affiliation:
Laboratoire des Sciences du Climat et de'l Environnement, L'Orme des Merisiers, Bat 709, CEA Saclay, 91191 Gif-Sur-Ivette Cedex, France
Lloyd D. Keigwin
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543
Karen-Luise Knudsen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK 8000 Aarhus C, Denmark
Jerry F. McManus
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543
Josef Merkt
Affiliation:
Niedersachsisches Landesamt für Bodenforschung, Stilleweg 2, D 30655 Hannover, Germany
Daniel R. Muhs
Affiliation:
US Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado, 80225
Helmut Müller
Affiliation:
Bevenser Weg 10, App. C 004, D 30625 Hannover, Germany
Richard Z. Poore
Affiliation:
US Geological Survey, National Center MS 955, 12201 Sunrise Valley Drive, Reston, Virginia, 20192
Stephen C. Porter
Affiliation:
Quaternary Research Center, University of Washington, Seattle, Washington, 98195
Guy Seret
Affiliation:
Department of Geology, Museum of Central Africa, B-3080 Tervuren, Belgium
Nicholas J. Shackleton
Affiliation:
Department of Earth Sciences, Godwin Laboratory, University of Cambridge, Pembroke Street, Cambridge, CB2 3SA, United Kingdom
Charles Turner
Affiliation:
Department of Earth Sciences, The Open University, Milton Keynes, MK76AA, United Kingdom
Polychronis C. Tzedakis
Affiliation:
School of Geography, University of Leeds, Leeds, LS2 9JT, United Kingdom
Isaac J. Winograd
Affiliation:
US Geological Survey, National Center MS 432, 12201 Sunrise Valley Drive, Reston, Virginia, 20192

Abstract

The last interglacial, commonly understood as an interval with climate as warm or warmer than today, is represented by marine isotope stage (MIS) 5e, which is a proxy record of low global ice volume and high sea level. It is arbitrarily dated to begin at approximately 130,000 yr B.P. and end at 116,000 yr B.P. with the onset of the early glacial unit MIS 5d. The age of the stage is determined by correlation to uranium–thorium dates of raised coral reefs. The most detailed proxy record of interglacial climate is found in the Vostok ice core where the temperature reached current levels 132,000 yr ago and continued rising for another two millennia. Approximately 127,000 yr ago the Eemian mixed forests were established in Europe. They developed through a characteristic succession of tree species, probably surviving well into the early glacial stage in southern parts of Europe. After ca. 115,000 yr ago, open vegetation replaced forests in northwestern Europe and the proportion of conifers increased significantly farther south. Air temperature at Vostok dropped sharply. Pulses of cold water affected the northern North Atlantic already in late MIS 5e, but the central North Atlantic remained warm throughout most of MIS 5d. Model results show that the sea surface in the eastern tropical Pacific warmed when the ice grew and sea level dropped. The essentially interglacial conditions in southwestern Europe remained unaffected by ice buildup until late MIS 5d when the forests disappeared abruptly and cold water invaded the central North Atlantic ca. 107,000 yr ago.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, B., and Tauber, H. Eemian climate and pollen. Nature 376, (1995). 27 28.CrossRefGoogle Scholar
Alley, R.B., Gow, A.J., Meese, D.A., Fitzpatrick, J.J., Waddington, E.D., and Bolzan, J.F. Grain-scale processes, folding, and stratigraphic disturbance in GISP2 ice core. Journal of Geophysical Research 102, (1997). 26,819 26,830.CrossRefGoogle Scholar
Arkhipov, S. A, and Volkova, V. S. 1994, Geological History, Pleistocene Landscapes and Climate in West Siberia. Transaction, Issue 823, Russian Academy of Sciences, Siberian Branch, United Institute of Geology, Geophysics and Mineralogy, Novosibirsk. [In Russian]Google Scholar
Baker, A., Smart, P.L., Edwards, R.L., and Richards, D.A. Annual growth banding in a cave stalagmite. Nature 364, (1993). 518 520.CrossRefGoogle Scholar
Berger, A., Guiot, J., Kukla, G., and Pestiaux, P. Long-term variations of monthly insolation as related to climatic changes. Geologisches Rundschau 70, (1981). 748 758.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 2130 2136.CrossRefGoogle ScholarPubMed
Broecker, W.S., and Henderson, G.M. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, (1998). 352 364.Google Scholar
Broecker, W.S., and van Donk, J. Insolation changes, ice volumes, and the O18 record in deep-sea cores. Reviews of Geophysics and Space Physics 8, (1970). 169 198.Google Scholar
Caspers, G., Freund, H., Merkt, J., and Müller, H. The Eemian interglaciation in northwestern Germany. Quaternary Research 58, (2002). 49 52.CrossRefGoogle Scholar
Chapman, M.R., and Shackleton, N.J. Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27, (1999). 795 798.Google Scholar
Clement, A., Seager, R., and Cane, M. Orbital controls on the tropical climate. Paleoceanography 14, (1999). 441 456.Google Scholar
Cleveringa, P., Meijer, T., Leeuwen, R.J.W., de Wolf, H., Pouwer, R., Lissenberg, T., and Burger, A.W. The Eemian stratotype locality at Amersfoort in the central Netherlands: A re-evaluation of old and new data. Geologie en Mijnbouw 79, (2000). 197 216.Google Scholar
Cuffey, K.M., and Marshall, S.J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, (2000). 591 594.CrossRefGoogle ScholarPubMed
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Langway, C.C. Jr. Climatic record revealed by the Camp Century Ice Core. Turekian, K.K. The Late Cenozoic Glacial Ages. (1971). Yale University Press, New Haven. 37 56.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Langway, C.C. Jr. Speculations about next glaciation. Quaternary Research 2, (1972). 396 398.CrossRefGoogle Scholar
de Beaulieu, J.-L., and Reille, M. The last climatic cycle at La Grande Pile (Vosges, France). A new pollen profile. Quaternary Science Reviews 11, (1992). 431 438.Google Scholar
de Beaulieu, J.-L., and Reille, M. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France). Vegetation History and Archaeobotany 1, (1992). 233 242.Google Scholar
de Gans, W., Beets, D.J., and Centineo, M.C. Late Saalian and Eemian deposits in the Amsterdam glacial basin. Geologie en Mijnbouw 79, (2000). 147 160.Google Scholar
Fairbridge, R.W. Climatology of a glacial cycle. Quaternary Research 2, (1972). 283 302.CrossRefGoogle Scholar
Field, M.H., Huntley, B., and Müller, H. Eemian climate fluctuations observed in European pollen record. Nature 371, (1994). 779 783.Google Scholar
Follieri, M., Magri, D., and Sadori, L. 250,000 year pollen record from Valle Di Castiglione (Roma). Pollen et Spores 30, (1988). 329 356.Google Scholar
Frenzel, B., and Bludau, W. On the duration of interglacial to glacial transition at the end of the Eemian interglacial (deep sea stage 5e): Botanical and sedimentological evidence. Berger, W.H., and Labeyrie, L.D. Abrupt Climatic Change—Evidence and Implications. Proceedings St. Hughes de Biviers NATO ARW, NATO ASI Series C 216, (1987). Reidel, Dordrecht. 151 162.Google Scholar
Freund, H., and Caspers, G. Vegetation und Paläoklima der Weichsel-Kaltzeit im nördlichen Mitteleuropa—Ergebnisse paläobotanischer, faunistischer und geologischer Untersuchungen. Schriftenreihe Deutsche Geologische Gessellschaft 4, (1997). 1 249.Google Scholar
Fronval, T., and Jansen, E. Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in Nordic seas with comparisons to Holocene conditions. Paleoceanography 12, (1997). 443 462.Google Scholar
Gascoyne, M., Currant, A.P., and Lord, T.C. Ipswichian fauna of Victoria Cave and the marine palaeoclimatic record. Nature 294, (1981). 652 654.CrossRefGoogle Scholar
Guiot, J., Pons, A., de Beaulieu, J.-L., and Reille, M. A 140,000-year continental climate reconstruction from two European pollen records. Nature 338, (1989). 309 313.CrossRefGoogle Scholar
Hahne, J., Kemle, S., Merkt, J., and Meyer, K.-D. Eem-, Weichsel-u. saalezeitliche Ablagerungen der Bohrung “Quakenbrück GE 2”. Geologisches Jahrbuch A 134, (1994). 9 69.Google Scholar
Harting, P. De bodem van het Eemdal. Verslagen en Mededelingen van de Koninklijke Academie van Wetenschappen (1874). 282 290.Google Scholar
Hedberg, H.D. Stratigraphic classification and terminology. American Association of Petroleum Geologists Bulletin 42, (1958). 1881 1896.Google Scholar
Henderson, G.M., Slowey, N.C., and Fleisher, M.Q. U–Th dating of carbonate platform and slope sediments. Geochimica et Cosmochimica Acta 65, (2001). 2757 2770.Google Scholar
Herbert, T.D., Schuffert, J.D., Andreasen, D., Heusser, L., Lyle, M., Mix, A., Ravelo, A.C., Stott, L.D., and Herguera, J.C. Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, (2001). 71 75.Google Scholar
Heusser, L.E. Rapid oscillations in western North America vegetation and climate during oxygen isotope stage 5 inferred from pollen data from Santa Barbara Basin (Hole 893A). Palaeogeography, Palaeoclimatology, and Palaeoecology 161, (2000). 407 421.Google Scholar
Howell, P. ARAND time series and spectral analysis package for the Macintosh, Brown University. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-044 (2001). Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., Mclntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record. Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. Milankovitch and Climate, Part I. (1984). Reidel, Boston. 269 305.Google Scholar
Jessen, K., and Milthers, V. Stratigraphical and paleontological studies of interglacial freshwater deposits in Jutland and north-west Germany. Danmarks Geologiske Undersøgelse II 48, (1928). 1 379.Google Scholar
Karabanov, E.B., Prokopenko, A.A., Williams, D.F., and Colman, S.M. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d. Quaternary Research 50, (1998). 46 55.CrossRefGoogle Scholar
Knudsen, K.-L., Seidenkrantz, M.-S., and Kristensen, P. Last interglacial and early glacial circulation in the northern North Atlantic Ocean. Quaternary Research 58, (2002). 22 26.Google Scholar
Kruk, R.W. U-Series Radiometric Dating of Eemian Molluscs from the Amsterdam Basin. About the Last Period That Was Really Warm in Amsterdam. (1998). Free UniversityFaculty of Earth Sciences, Amsterdam.Google Scholar
Kukla, G.J. The last interglacial. Science 287, (2000). 987 988.CrossRefGoogle Scholar
Kukla, G., and Gavin, J. Insolation regime of the warm to cold transitions. Kukla, G., and Went, E. Start of a Glacial, Proceedings Mallorca NATO ARW, NATO ASI Series I, Vol. 3. (1992). Springer-Verlag, New York. 307 339.Google Scholar
Kukla, G., Berger, A., Lotti, R., and Brown, J. Orbital signature of interglacials. Nature 290, (1981). 295 300.Google Scholar
Kukla, G., McManus, J.F., Rousseau, D.-D., and Chuine, I. How long and how stable was the last interglacial?. Quaternary Science Reviews 16, (1997). 605 612.CrossRefGoogle Scholar
Kukla, G.J., Clement, A.C., Cane, M.A., Gavin, J.E., and Zebiak, S.E. Last interglacial and early glacial ENSO. Quaternary Research 58, (2002). 27 31.CrossRefGoogle Scholar
Kukla, G.J., de Beaulieu, J.-L., Svobodova, H., Andrieu, V., Thouveny, N., and Stockhausen, H. Tentative correlation of pollen records of the last interglacial at La Grande Pile and Ribains with marine isotope stages. Quaternary Research 58, (2002). 32 35.CrossRefGoogle Scholar
Lauritzen, S.-E. Natural environmental change in karst: The Quaternary record. Catena Supplement 25, (1993). 21 40.Google Scholar
Lauritzen, S.-E. High-resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems. Quaternary Research 43, (1995). 133 146.Google Scholar
Lototskaya, A., and Ganssen, G.M. The structure of Termination II (penultimate deglaciation and Eemian) in the North Atlantic. Quaternary Science Reviews 18, (1999). 1641 1654.Google Scholar
Mangerud, J., Dokken, T., Hebbeln, D., Heggen, B., Ingólfsson, O., Landvik, J.Y., Mejdahl, V., Svendsen, J.I., and Vorren, T.O. Fluctuations of the Svalbard–Barents sea ice sheet during the last 150,000 years. Quaternary Science Reviews 17, (1998). 11 42.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., and Shackleton, N.J. Age dating and the orbital theory of ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, (1987). 1 29.Google Scholar
McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., and Higgins, S. High-resolution climate records from the North-Atlantic during the last interglacial. Nature 371, (1994). 326 329.CrossRefGoogle Scholar
McManus, J.F., Oppo, D.W., and Cullen, J.L. A 0.5 million year millennial scale climate variability in the North Atlantic. Science 283, (1999). 971 975.Google Scholar
McManus, J.F., Oppo, D.W., Keigwin, L.D., Cullen, J.L., and Bond, G.C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quaternary Research 58, (2002). 17 21.CrossRefGoogle Scholar
Menke, B., and Tynni, R. Das Eeminterglazial und das Weichselfrühglazial von Rederstall/Dithmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozän-Gliederung. Geologisches Jahrbuch A 76, (1984). 1 120.Google Scholar
Muhs, D.R. Evidence for the timing and duration of the last interglacial period from high-precision uranium-series ages of corals on tectonically stable coastlines. Quaternary Research 58, (2002). 36 40.CrossRefGoogle Scholar
Müller, H. Pollenanalytische Untersuchungen und Jahresschichtenzahlung an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch A 21, (1974). 149 169.Google Scholar
Nordmann, V. Molluskenfaunaen i Cyprinaleret og Mellem-Europas andre Eem-aflejringer. Studier over interglaciale aflejringer i Danmark, Holland og Nord-Tyskland. (1908). København University, Google Scholar
Oppo, D.W., Keigwin, L.D., McManus, J.F., and Cullen, J.L. Evidence for millennial scale variability during marine isotope stage 5 and Termination II. Paleoceanography 16, (2001). 280 292.Google Scholar
Paterson, W.S.B., Koerner, R.M., Fisher, D., Johnsen, S.J., Clausen, H.B., Dansgaard, W., Bucher, P., and Oeschger, H. An oxygen-isotope climatic record from the Devon Island ice cap, arctic Canada. Nature 266, (1977). 508 511.Google Scholar
Penck, A., and Brückner, E. Die Alpen im Eiszeitalter. Tauchnitz, Leipzig 1–3, (1909). Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, (1999). 429 436.Google Scholar
Pisias, N.G., Martinson, D.G., Moore, T.C. Jr., Shackleton, N.J., Prell, W., Hays, J., and Boden, G. High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Marine Geology 56, (1984). 119 136.CrossRefGoogle Scholar
Pons, A., Guiot, J., de Beaulieu, J.-L., and Reille, M. Recent contributions to climatology of last glacial–interglacial cycle based on French pollen sequences. Quaternary Science Reviews 11, (1992). 439 448.CrossRefGoogle Scholar
Poore, R, Dowsett, H, Barron, J, Heusser, L, Ravelo, C, Mix, A, and McHahon, A. 1999, Microfossil and Stable Isotope Data from the Last Interglacial Records of Ocean Drilling Program (ODP) Sites 1018 and 1020. U.S. Geological Survey Open File Report 99–397.Google Scholar
Prokopenko, A.A., Karabanov, E.B., Williams, D.F., and Khursevich, G.K. The stability and the abrupt ending of the last interglaciation in southeastern Siberia. Quaternary Research 58, (2002). 56 59.CrossRefGoogle Scholar
Rioual, P., Andrieu–Ponel, V., Rietti-Shati, M., Battarbee, R.W., de Beaulieu, J.-L., Cheddadi, R., Reille, M., Svobodova, H., and Shemesh, A. High resolution record of climate stability in France during the last interglacial period. Nature 413, (2001). 293 296.Google Scholar
Salvador, A. International Stratigraphic Guide. A Guide to Stratigraphic Classification, Terminology and Procedure. (1994). International Union of Geological Sciences, Trondheim.Google Scholar
Sánchez-Goñi, M.F., Eynaud, F., Turon, J.L., and Shackleton, N.J. High resolution palynological record off the Iberian margin: Direct land–sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171, (1999). 123 137.CrossRefGoogle Scholar
Schrag, D.P., Hampt, G., and Murray, D.W. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, (1996). 1930 1932.Google Scholar
Shackleton, N.J. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, (1967). 15 17.Google Scholar
Shackleton, N.J. The last interglacial in the marine and terrestrial records. Proceedings of Royal Society London B 174, (1969). 135 154.Google Scholar
Shackleton, N.J., Chapman, M., Sánchez-Goñi, M.F., Pailler, D., and Lancelot, Y. The classic marine isotope substage 5e. Quaternary Research 58, (2002). 14 16.CrossRefGoogle Scholar
Seret, G., Dricot, E., and Wansard, G. Evidence for early glacial maximum in French Vosges during last glacial cycle. Nature 346, (1990). 453 456.CrossRefGoogle Scholar
Seret, G., Guiot, J., Wansard, G., de Beaulieu, J.-L., and Reille, M. Tentative palaeoclimatic reconstruction linking pollen and sedimentology in La Grande Pile (Vosges, France). Quaternary Science Reviews 11, (1992). 425 430.Google Scholar
Turner, C. The Eemian interglacial in the North European plain and adjacent areas. Geologie en Mijnbouw 79, (2000). 217 231.Google Scholar
Turner, C. Formal status and vegetational development of the Eemian interglacial in northwestern and southern Europe. Quaternary Research 58, (2002). 41 44.Google Scholar
Turner, C. Problems of the duration of the Eemian interglacial in Europe north of the Alps. Quaternary Research 58, (2002). 45 48.CrossRefGoogle Scholar
Turner, C., and West, R.G. The subdivision and zonation of interglacial periods. Eiszeitalter und Gegenwart 19, (1968). 93 101.Google Scholar
Turon, J.-L. Direct land/sea correlations in last interglacial complex. Nature 309, (1984). 673 676.CrossRefGoogle Scholar
Tzedakis, P.C., Frogley, M., and Heaton, T.H.E. Duration of last interglacial conditions in northwestern Greece. Quaternary Research 58, (2002). 53 55.Google Scholar
van Kolfschoten, T., and Gibbard, P.L. Special Issue: The Eemian—Local sequences, global perspectives. Geologie en Mijnbouw 79, (2000). 129 367.Google Scholar
van Leeuwen, R.J.W., Beets, D.J., Bosch, J.H.A., Burger, A.W., Cleveringa, P., van Harten, D., Herngreen, G.F.W., Kruk, R.W., Langereis, C.G., Meijer, T., Pouwer, R., and de Wolf, H. Stratigraphy and integrated facies analysis of the Saalian and Eemian sediments in the Amsterdam-Terminal borehole, the Netherlands. Geologie en Mijnbouw 79, (2000). 161 196.Google Scholar
Winograd, I.J. Evidence from uranium-series-dated speleothems for the timing of the penultimate deglaciation of northwestern Europe. Quaternary Research 58, (2002). 60 61.Google Scholar
Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Kolesar, P.T., and Revesz, K.M. Continuous 500,000 year climate record from vein calcite in Devils Hole, Nevada. Science 258, (1992). 255 260.CrossRefGoogle Scholar
Winograd, I.J., Coplen, T.B., Ludwig, K.R., Landwehr, J.M., and Riggs, A.C. High resolution δ18O record from Devils Hole, Nevada, for the period 80 to 19 ka. Eos, Transactions, American Geophysical Union 77, (1996). S169 Google Scholar
Winograd, I.J., Landwehr, J.M., Ludwig, K.R., Coplen, T.B., and Riggs, A.C. Duration and structure of past four interglaciations. Quaternary Research 48, (1997). 141 154.CrossRefGoogle Scholar
Woillard, G.M. Grande Pile peat bog: A continuous pollen record for the last 140,000 years. Quaternary Research 9, (1978). 1 21.Google Scholar
Woillard, G.M. Abrupt end of last interglacial s.s. in north-east France. Nature 281, (1979). 558 562.CrossRefGoogle Scholar
Zagwijn, W.H. Vegetation, climate and radiocarbon datings in Late Pleistocene of the Netherlands. Part I: Eemian and Early Weichselian. Mededelingen van de Geologische Stichting, Nieuwe Serie 14, (1961). 15 40.Google Scholar
Zagwijn, W.H. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15, (1996). 451 469.Google Scholar