Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:03:55.992Z Has data issue: false hasContentIssue false

Landscape changes in the southern Amazonian foreland basin during the Holocene inferred from Lake Ginebra, Beni, Bolivia

Published online by Cambridge University Press:  26 December 2019

Katerine Escobar-Torrez*
Affiliation:
Universidad Mayor de San Andrés, Bolivia Herbario Nacional de Bolivia (LPB), 10077La Paz, Bolivia
Marie-Pierre Ledru
Affiliation:
ISEM, Université de Montpellier, CNRS, EPHE, IRD, 34095Montpellier, France
Teresa Ortuño
Affiliation:
Herbario Nacional de Bolivia (LPB), 10077La Paz, Bolivia
Umberto Lombardo
Affiliation:
Institute of Geography, University of Bern, 3012Bern, Switzerland
Jean-François Renno
Affiliation:
Laboratoire Mixte International - Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI-EDIA), UMR DIADE (IRD, Université de Montpellier), Centre IRD, F-34394Montpellier Cedex 5, France
*
*Corresponding author e-mail address: [email protected] (K.E.-T.).

Abstract

Our study is located in northern Beni and aims to improve knowledge on regional landscape changes from the last 8600 years, based on pollen and charcoal analyses from a lacustrine sediment core from Lake Ginebra. Our results showed that gallery forest and lacustrine sediment were observed from 8645 until 3360 cal yr BP. After a change from a lacustrine to a swamp environment at 1700 cal yr BP, the Cerrados and the Mauritia swamp became installed 1000 years ago on our study site. The environmental changes we observed over the last 8600 years in the Ginebra record reinforce the evidence of a west–east climatic gradient with the persistence of rain forest throughout the Holocene on the western side and the presence of the Cerrados until the late Holocene on the eastern side. Moreover, the persistence of a wet forest in the early to mid-Holocene in southwestern Amazonia highlighted some local responses to the global trend that could be related to the distance from the Andes; while in the late Holocene, both an increase in insolation and strengthening of the South American summer monsoon system enabled the installation of a seasonal flooded savanna in northern Beni and of the rain forest in eastern Beni.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., et al. , 1991. Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de l'Amazonie au cours des 60000 dernières années. Première comparaison avec d'autres régions tropicales. Compte Rendu de l'Académie des Sciences de Paris 312, 673678.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Scott, L.C., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle ScholarPubMed
Beck, S.G., Moraes, M., 1997. Llanos de Mojos Region, Bolivia. In: Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J., Hamilton, A.C. (Eds.), Centres of Plant Diversity: A Guide and Strategy for Their Conservation. Vol. 3, The Americas. WWF and IUCN, Oxford, UK.Google Scholar
Bennett, K.D., 1994. ‘psimpoll’ version 2.23: A C program for analysing pollen data and plotting pollen diagrams. INQUA Commission for the Study of the Holocene: Working Group on Data-Handling Methods, Newsletter 11, 46.Google Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.CrossRefGoogle Scholar
Bernhardt, C.E., Willard, D.A., 2009. Response of the Everglades ridge and slough landscape to climate variability and 20th-century water management. Ecological Applications, 19 (7): 17231738.CrossRefGoogle ScholarPubMed
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Blatrix, R., Roux, B., Béarez, P., Prestes-Carneiro, G., Amaya, M., Aramayo, J. L., Rodrigues, L., et al. , 2018. The unique functioning of a pre-Columbian Amazonian floodplain fishery. Scientific Reports 8, 5998.CrossRefGoogle ScholarPubMed
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., et al. , 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features. Climate of the Past, 3, 261277.CrossRefGoogle Scholar
Brock, T.C.M., Velde, G., Steeg, H.M., 1987. The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in the Netherlands. Archiv für Hydrobiologie, Beiheft 27, 5773.Google Scholar
Brugger, S.O., Gobet, E., van Leeuwen, J.F., Ledru, M-P., Colombaroli, D., van der Knaap, W., Lombardo, U., Escobar-Torrez, K., Finsinger, W., Rodrigues, L., 2016. Long-term man-environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quaternary Science Reviews 132, 114128.CrossRefGoogle Scholar
Burbridge, R.E., Mayle, F.E., Killeen, T.J., 2004. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research 61, 215230.CrossRefGoogle Scholar
Burn, M.J., Mayle, F.E., 2008. Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Review of Palaeobotany and Palynology 149, 187201.CrossRefGoogle Scholar
Bush, M.B., Correa-Metrio, A., McMichael, C.H., Sully, S., Shadik, C.R., Valencia, B.G., Guilderson, T., Steinits-Kannan, M., Overpeck, J.T., 2016. A 6900-year history of landscape modification by humans in lowland Amazonia. Quaternary Science Reviews 141, 5264.CrossRefGoogle Scholar
Carson, J.F., Whitney, B.S., Mayle, F.E., Iriarte, J., Prümers, H., Soto, J.D., Watling, J., 2014. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proceedings of the National Academy of Sciences of the United States of America 111, 497502.CrossRefGoogle ScholarPubMed
Cassino, R., Meyer, K.E.B., 2011. Morfologia de grãos de pólen e esporos de níveis holocênicos de uma vereda do Chapadão dos Gerais (Buritizeiro, Minas Gerais), Brasil. Gaea 7, 4170.CrossRefGoogle Scholar
Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d'Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S., 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications 4, 1411.CrossRefGoogle ScholarPubMed
Colinvaux, P., de Oliveira, P.E., Moreno Patiño, J.E., 1999. Amazon Pollen Manual and Atlas. Harwood Academic, Amsterdam.Google Scholar
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Edwards, L.R., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east–west antiphasing of South American precipitation. Nature Geoscience 2, 210214.CrossRefGoogle Scholar
Dumont, J-F, Fournier, M.,1994. Geodynamic environment of Qua- ternary morphostructures of the subandean foreland basins of Peru and Bolivia: characteristics and study methods. Quaternary International 21, 129142.CrossRefGoogle Scholar
Denevan, W.M., 1996. A bluff model of riverine settlement in prehistoric Amazonia. Annals of the American Association of Geographers 86, 654681.CrossRefGoogle Scholar
Escobar-Torrez, K., Ortuño, T., Bentaleb, I., Ledru, M.-P., 2018. Cloud dynamic contribution to high elevation peatland growth during the Holocene (Escalerani, Central Andes, Bolivia). Holocene 28, 13341344.CrossRefGoogle Scholar
Espinoza, J.C., Marengo, J.A., Ronchail, J., Molina, J., Noriega, L., Guyot, J.L., 2014. The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient. Environmental Research Letters 9, 124007.CrossRefGoogle Scholar
Espinoza, J.C., Ronchail, J., Lengaigne, M., Quispe, N., Silva, Y., Bettolli, M.L., Avalos, G., Llacza, A., 2013. Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Climate Dynamics 41, 19832002.CrossRefGoogle Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. Hafner, New York.Google Scholar
Finsinger, W., Kelly, R., Fevre, J., Magyari, E.K., 2014. A guide to screening charcoal peaks in macrocharcoal-area records for fire-episode reconstructions. Holocene 24, 10021008.CrossRefGoogle Scholar
Fontes, N.J., Moraes, C.A., Cohen, M.C.L., Alves, I.C.C., França, M.C., Pessenda, L.C.R., Franscisquini, M.I., Bendassolli, J.A., Macario, K., Mayle, F., 2017. The impacts of the middle Holocene high sea-level stand and climatic changes on mangroves of the Jucuruçu River, southern Bahia–northeastern Brazil. Radiocarbon 59, 215230.CrossRefGoogle Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2005. Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia. Quaternary Research 64, 284297.CrossRefGoogle Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2009. Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, 7085.CrossRefGoogle Scholar
Grimm, E., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Hanagarth, W., 1993. Acerca de la geoecologia de las sabana del Beni en el noreste de Bolivia. Instituto de ecología, La Paz, Bolivia.Google Scholar
Hanagarth, W., Beck, S.G. 1996. Biogeographie der Beni-Savannen (Bolivien). Geographische Rundschau 48, 662669.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Hermanowski, B., da Costa, M.L., Behling, H. (2012). Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a pleoecological record. Quaternary Research, 77(1): 138148. doi:10.1016/j.yqres.2011.10.009CrossRefGoogle Scholar
Herrera, L.F., Urrego, L.E., 1996. Atlas de polen de las plantas útiles y cultivadas de la Amazonia colombiana. Tropenbos Colombia, Bogotá, Colombia.Google Scholar
Heusser, C.J., 1971. Pollen and Spores of Chile. Modern Types of Pteridophyta, Gymnospermae, and Angiospermae. University of Arizona Press, Tucson.Google Scholar
Hilbert, L., Neves, E.G., Pugliese, F., Whitney, B.S., Shock, M., Veasey, E., Zimpel, C.A., Iriarte, J., 2017. Evidence for mid-Holocene rice domestication in the Americas. Nature Ecology & Evolution 1, 16931698.CrossRefGoogle ScholarPubMed
Hiraoka, M., 1999. Mirití (Mauritia flexuosa) palms and their uses and management among the ribeirinhos of the Amazon estuary. Advances in Economics Botany 13, 169186.Google Scholar
Hogg, A.H., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, SC.S.M., Zimmerman, S.R.H., 2013. SHCal 13 southern hemisphere calibration, 0-50,000 years cal BP. Radiocarbon, 55 (4): 18891903.CrossRefGoogle Scholar
Iriarte, J., Power, M.J., Rostain, S., Mayle, F.E., Jones, H., Watling, J., Whitney, B.S., McKey, D.B., 2012. Fire-free land use in pre-1492 Amazonian savannas. Proceedings of the National Academy of Sciences of the United States of America 109, 64736478.CrossRefGoogle ScholarPubMed
Jomelli, V., Khodri, M., Favier, V., Brunstein, D., Ledru, M.-P., Wagnon, P., Blard, P.-H., et al. , 2011. Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474, 196199.CrossRefGoogle Scholar
Jones, H.T., Mayle, F.E., Pennington, R.T., Killeen, T.J., 2011. Characterisation of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Review of Palaeobotany and Palynology 164, 223237.CrossRefGoogle Scholar
Kummel, B., Raup, D., 1965. Handbook of Paleontological Techniques. W. H. Freeman, San Francisco, CA.Google Scholar
Langstroth, P., 2011. Biogeography of the Llanos de Moxos: natural and anthropogenic determinants. Geographica Helvetica 66, 183192.CrossRefGoogle Scholar
Larrea-Álcazar, D., López, R., Quintanilla, M., Vargas, A., 2010. Gap analysis of two savanna-type ecoregions: a two-scale floristic approach applied to the Llanos de Moxos and Beni Cerrado, Bolivia. Biodiversity and Conservation 19, 1796–1783.CrossRefGoogle Scholar
Leal, A., Berrío, J.C., Raimúndez, E., Bilbao, B., 2011. A pollen atlas of premontane woody and herbaceous communities from the upland savannas of Guayana, Venezuela. Palynology 35, 226266.CrossRefGoogle Scholar
Ledru, M.-P., 2001. Late Holocene rainforest disturbance in French Guiana. Review of Palaeobotany and Palynology 115, 161176.CrossRefGoogle ScholarPubMed
Ledru, M.-P., 2002. Late Quaternary history and evolution of the Cerrados as revealed by palynological records. In: Oliveria, P.S., Marquis, R.J. (Eds.), The Cerrados of Brazil. Columbia University Press, New York, pp 3351.CrossRefGoogle Scholar
Ledru, M.-P., Jomelli, V., Bremond, L., Cruz, P., Ortuño, T., Bentaleb, I., Sylvestre, F., et al. , 2013. Evidence for moisture niches in the Bolivian Andes during the mid-Holocene arid period. Holocene 23, 15451557.CrossRefGoogle Scholar
Lombardo, U., 2014. Neotectonics, flooding patterns and landscape evolution in southern Amazonia. Earth Surface Dynamics 2, 493511.CrossRefGoogle Scholar
Lombardo, U., Canal-Beeby, E., Veit, H., 2011. Eco-archaeological regions in the Bolivian Amazon. Geographica Helvetica 66, 173182.CrossRefGoogle Scholar
Lombardo, U., Denier, S., May, J.-H., Rodrigues, L., Veit, H., 2013a. Human–environment interactions in pre-Columbian Amazonia: the case of the Llanos de Moxos, Bolivia. Quaternary International 312, 109119.CrossRefGoogle Scholar
Lombardo, U., May, H.-J., Veit, H., 2012. Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. Holocene 22, 10351045.CrossRefGoogle Scholar
Lombardo, U., Rodrigues, L., Veit, H., 2018. Alluvial plain dynamics and human occupation in SW Amazonia during the Holocene: a paleosol-based reconstruction. Quaternary Science Reviews 180, 3041.CrossRefGoogle Scholar
Lombardo, U., Szabo, K., Capriles, J.M., May, J.-H., Amelung, W., Hutterer, R., Lehndorff, E., Plotzki, A., Veit, H., 2013b. Early and middle Holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens. PLoS ONE 8, e72746.CrossRefGoogle Scholar
Maezumi, S.Y., Power, M.J., Mayle, F.E., McLauchlan, K.K., Iriarte, J., 2015. Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia. Climate of the Past 11, 835853.CrossRefGoogle Scholar
Marchant, R., Cleef, A., Harrison, S.P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., et al. , 2002. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past, 5, 725767.CrossRefGoogle Scholar
Maslin, M.A., Durham, E., Burns, S.J., Platzman, E., Grootes, P., Greig, S.E.J., Madeau, M.-J., et al. , 2000. Palaeoreconstruction of the Amazon river freshwater and sediment discharge using sediments recovered at site 942 on the Amazon Fan. Journal of Quaternary Science 15, 419–343.3.0.CO;2-L>CrossRefGoogle Scholar
Mayle, F.E., Beerling, D.J., Gosling, W.D., Bush, M.B., 2004. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society B 359, 499514.CrossRefGoogle ScholarPubMed
Mayle, F.E., Burdbridge, R., Killen, T.J., 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 22912294.CrossRefGoogle ScholarPubMed
Mayle, F.E., Power, M.J., 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forest. Philosophical Transactions of the Royal Society B 363, 18291838.CrossRefGoogle Scholar
Mayle, F.E., Whitney, B.S., 2012. Long-term perspectives on tropical forest-savanna dynamics in lowland Bolivia from the last ice age until present. In: Myster, R.W. (Ed.), Ecotones between Forest and Grassland. Springer, New York, pp. 189207.CrossRefGoogle Scholar
Montoya, E., Rull, V., Vegas-Vilarrúbia, T., 2012. Non-pollen palynomorph studies in the Neotropics: the case of Venezuela. Review of Paleobotany and Palynology 186, 102130.CrossRefGoogle Scholar
Navarro, G., Maldonado, M., 2011. Geografía Ecológica de Bolivia. Vegetación y Ambientes Acuáticos. Editorial Centro de Ecología Simón I, Patiño, Cochabamba, Bolivia.Google Scholar
Ovando, A., Tomasella, J., Rodrigues, D.A., Martinez, J.M., Siqueira-Junior, J.L., Pinto, G.L.N., Passy, P., Vauchel, P., Noriega, L., von Randow, C., 2016. Extreme flood events in the Bolivian Amazon wetlands. Journal of Hydrology: Regional Studies 5, 293308.Google Scholar
Paniagua-Zambrana, N., 2005. Diversidad, densidad, distribución y uso de palmas en la region del Madidi, noroeste del departamento de La Paz (Bolivia). Ecología en Bolivia 40, 256280.Google Scholar
Plotzki, A., May, J.-H., Preusser, F., Roesti, B., Denier, S., Lombardo, U., Veit, H., 2015. Geomorphology and evolution of the late Pleistocene to Holocene fluvial system in the south-eastern Llanos de Moxos, Bolivian Amazon. Catena 127, 102115.CrossRefGoogle Scholar
Prado, L.F., Wainer, I., Chiessi, C.M., Ledru, M.-P., Turcq, B., 2013. Mid-Holocene climate reconstruction for eastern South America. Climate of the Past, 8, 59255961.CrossRefGoogle Scholar
Prümers, H., Jaimes Betancourt, C., 2014. 100 años de investigación arqueológica en los Llanos de Mojos. Arqueoantropológicas 4, 1153.Google Scholar
Radaeski, J.N., Bauermann, S.G., 2017. Access of dynamics vegetation during Holocene by Poaceae pollen grains. Open Access Journal of Science 1, 00015.CrossRefGoogle Scholar
Radaeski, J.N., Bauermann, S.G., Pereira, A.B., 2016. Poaceae pollen from southern Brazil: distinguishing grasslands (Campos) from forest by analyzing a diverse range of Poaceae species. Frontiers in Plant Science 7, 1833.CrossRefGoogle ScholarPubMed
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Revilla-Romero, B., Hirpa, F.E., Pozo, J., Salamon, P., Brakenridge, R., Pappenberger, F., De Groeve, T., 2015. On the use of global flood forecast and satellite-derived inundation maps for flood monitoring in data-sparse regions. Remote Sensing 7, 1570215728.CrossRefGoogle Scholar
Rodrigues, L., Lombardo, U., Trauerstein, M., Huber, P., Mohr, S., Veit, H., 2016. An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands. Soil 2, 367389.CrossRefGoogle Scholar
Rodrigues, L., Lombardo, U., Veit, H., 2018. Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: differential adaptations to the local environment? Journal of Archaeological Science: Reports 17, 366378.CrossRefGoogle Scholar
Ronchail, J., Bourrel, L., Cochonneau, G., Vauchel, V., Phillips, L., Castro, A., Guyot, J.-L., de Oliveira, E., 2005. Inundations in the Mamore´ basin (south-western Amazon–Bolivia) and sea-surface temperature in the Pacific and Atlantic Oceans. Journal of Hydrology 302, 223238.CrossRefGoogle Scholar
Roubik, D.W., Moreno, P., 1991. Pollen and Spores of Barro Colorado Island. Monographs in Systematic Botany, Vol. 36. Missouri Botanical Garden, St. Louis, MO.Google Scholar
Rowe, H.D., Dunbar, R.B., Mucciarone, D.A., Seltzer, G.O., Baker, P.A., Fritz, S., 2002, Insolation, moisture balance and climate change on the South American Altiplano since the Last Glacial Maximum. Climatic Change 52, 175199.CrossRefGoogle Scholar
Schüler, L., Behling, H., 2011. Poceae pollen grain size as a tool to distinguish past grasslands in South America: a new methodological approach. Vegetation History and Archaeobotany, 20(2): 8396.CrossRefGoogle Scholar
Simon, M.F., Grether, R., de Queiroz, L.P., Skema, C., Pennington, R.T., Hughes, C.E., 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptation to fire. Proceedings of the National Academy of Sciences of the United States of America 106, 2035920364.CrossRefGoogle Scholar
Stansell, N.D., Rodbell, D.T., Licciardi, J.M., Sedlak, C.M., Schweinsenberg, A.D., Huss, E.G., Delgado, G.M., Zimmerman, S.H., Finkel, R.C., 2015. Late Glacial and Holocene glacier fluctuations at Nevado Huagurunchu in the Eastern Cordillera of the Peruvian Andes. Geology 43, 747750.CrossRefGoogle Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615621.Google Scholar
Urrego, D.H., Bush, M.B., Silman, M.R., 2010. A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research 73, 364373.CrossRefGoogle Scholar
Urrego, D.H., Bush, M.B., Silman, M.R., Niccum, B.A., De La Rosa, P., McMichael, C.H., Hagen, S., Palace, M., 2013. Holocene fires, forest stability and human occupation in south-western Amazonia. Journal of Biogeography 40, 521533.CrossRefGoogle Scholar
Van Breukelen, M.R., Vonhof, H.B., Hellstrom, J.C., Wester, W.C.G., Kroon, D., 2008. Fossil dripwater in stalagmites reveals Holocene temperatures and rainfall variation in Amazonia. Earth and Planetary Science Letters 275, 5460.CrossRefGoogle Scholar
Vuille, M., Burns, S.J., Taylor, B.L., Cruz, F.W., Bird, B.W., Abbott, M.B., Kanner, L.C., Cheng, H., Novello, V.F., 2012. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate of the Past 8, 13091321.CrossRefGoogle Scholar
Walker, J., 2004. Agricultural Change in the Bolivian Amazon. Memoirs in Latin American Archaeology No. 13. Department of Archaeology, University of Pittsburgh, Pittsburgh, PA.Google Scholar
Supplementary material: File

Escobar-Torrez et al. supplementary material

Tables S1-S2

Download Escobar-Torrez et al. supplementary material(File)
File 43.7 KB