Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T16:46:12.489Z Has data issue: false hasContentIssue false

The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China

Published online by Cambridge University Press:  20 January 2017

Tao Su
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Yu-Sheng (Christopher) Liu
Affiliation:
Department of Biological Sciences, and Don Sundquist Center of Excellence in Paleontology, Box 70703, East Tennessee State University, Johnson City, Tennessee 37614-1710, USA
Frédéric M.B. Jacques
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
Yong-Jiang Huang
Affiliation:
Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
Yao-Wu Xing
Affiliation:
Institute of Systematic Botany, University of Zürich, Zürich 8008, Switzerland
Zhe-Kun Zhou*
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
*
*Corresponding author. Fax: + 86 871 5219932. E-mail address:[email protected] (Z.-K. Zhou).

Abstract

Climate change during the Quaternary played an important role in the distribution of extant plants. Herein, cone scales of Cedrus (Pinaceae) were uncovered from the Upper Pliocene Sanying Formation, Longmen Village, Yongping County of Yunnan Province in southwestern China. Detailed comparisons show that these fossils all belong to the genus Cedrus (Pinaceae), and a new species is proposed, Cedrus angusta sp. nov. This find expands the known distribution of Cedrus during the Late Pliocene to Yunnan, where the genus no longer exists in natural forests. Based on the analysis of reconstructed Neogene climate data, we suggest that the intensification of the East Asian winter monsoon during the Quaternary may have dramatically increased seasonality and given rise to a much drier winter in Yunnan. Combined with information on Cedrus fossil records and its seed physiology, we conclude that the intensification of a drier climate after the Late Pliocene may have prevented the survival of Cedrus seedlings, leading to the eventual disappearance of Cedrus in western Yunnan. This study indicates that the topography in southwestern China acted as a vital refuge for many plants during the Quaternary, but that other species gradually disappeared due to the intensification of the monsoonal climate.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M., Shaukat, S.S., Siddiqui, M.F., (2011). A multivariate analysis of the vegetation of Cedrus deodara forests in Hindu Kush and Himalayan ranges of Pakistan: evaluating the structure and dynamics. Turkish Journal of Botany 35, 419438.Google Scholar
Arnold, C.A., (1952). Silicified plant remains from the Mesozoic and Tertiary of western North America. II. Some fossil woods from north-western Alaska. Papers of the Michigan Academy of Science. Arts and Letters 38, 920.Google Scholar
Barghoorn jr., E.S., Bailey, I.W., (1938). The occurrence of Cedrus in the auriferous gravels of California. American Journal of Botany 25, 641648.CrossRefGoogle Scholar
Blokhina, N.I., (1998). Fossil wood of Cedrus (Pinaceae) from the Paleogene of Kamchatka. Journal of Paleontology 32, 532538.Google Scholar
Blokhina, N.I., Afonin, M.A., (2007). Fossil wood Cedrus penzhinaensis sp. nov. (Pinaceae) from the Lower Cretaceous of north-western Kamchatka (Russia). Acta Palaeobotanica 47, 379389.Google Scholar
Boulay, N., (1887). Notice sur la flore tertiaire des environs de Privas (Ardèche). Bulletin de la Societe Geologique de France 34, 227239.(255-279 (in French)).CrossRefGoogle Scholar
Boulay, N., (1892). Flore Pliocène du Mont-Dore, Puy-de-Dôme. (Savy, Paris (in French)).Google Scholar
Cheddadi, R., Fady, B., François, L., Hajar, L., Suc, J.P., Huang, K., Demarteau, M., Vendramin, G.G., Ortu, E., (2009). Putative glacial refugia of Cedrus atlantica deduced from Quaternary pollen records and modern genetic diversity. Journal of Biogeography 36, 13611371.Google Scholar
Compiling Group of the Regional Stratigraphic Table of Yunnan (CGRSTY), (1978). Regional Stratigraphic Table of SW China: Yunnan Volume. Geological Publishing House, Beijing.Google Scholar
Crisp, M.D., Cook, L.G., (2011). Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist 192, 9971009.Google Scholar
Ducrey, M., Huc, R., Ladjal, M., Guehl, J.-M., (2008). Variability in growth, carbon isotope composition, leaf gas exchange and hydraulic traits in the eastern Mediterranean cedars Cedrus libani and C. brevifolia . Tree Physiology 28, 689701.CrossRefGoogle ScholarPubMed
Ferguson, D.K., (1967). On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 3, 73110.Google Scholar
Fu, L.-G., Li, N., Li, N., Elias, T.S., Mill, R.R., (1999). Flora of China Vol. 4: Pinaceae. Science Press & Missouri Botanical Garden, .Google Scholar
Ge, H.R., Li, D.Y., (1999). Cenozoic Coal-Bearing Basins and Coal-Forming Regularity in West Yunnan. Yunnan Science and Technology Press, Kunming.(in Chinese with English Abstract).Google Scholar
Hajar, L., Francois, L., Khater, C., Jomaa, I., Deque, M., Cheddadi, R., (2010). Cedrus libani (A. Rich) distribution in Lebanon: past, present and future. Comptes Rendus Biologies 333, 622630.CrossRefGoogle ScholarPubMed
Han, W.-X., Fang, X.-M., Berger, A., (2012). Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record. Quaternary Research 78, 174184.Google Scholar
Hsü, J., Tao, J.-R., Sun, X.-J., (1973). On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology. Acta Botanica Sinica 15, 103119.(in Chinese with English Abstract).Google Scholar
Jacques, F.M.B., Guo, S.-X., Su, T., Xing, Y.-W., Huang, Y.-J., Liu, Y.-S., Ferguson, D.K., Zhou, Z.-K., (2011a). Quantitative reconstruction of the late Miocene monsoon climates of southwest China: a case study of the Lincang flora from Yunnan Province. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 318327.Google Scholar
Jacques, F.M.B., Su, T., Spicer, R.A., Xing, Y.-W., Huang, Y.-J., Wang, W.-M., Zhou, Z.-K., (2011b). Leaf physiognomy and climate: are monsoon systems different?. Global and Planetary Change 76, 5662.CrossRefGoogle Scholar
Kou, X.-Y., Ferguson, D., Xu, J.-X., Wang, Y.-F., Li, C.-S., (2006). The reconstruction of paleovegetation and paleoclimate in the late Pliocene of West Yunnan, China. Climatic Change 77, 431448.CrossRefGoogle Scholar
Kuang, M.-S., Xie, S.-Y., Zeng, Y., Li, L.-L., Feng, S.-G., Zhang, Y.-Z., (2002). Study on the palaeovegatation and palaeoclimate since late Pleistocene in the Dianchang Mountain area in Dali of Yunnan Province. Journal of Southwest China Normal University (Natural Science) 27, 759765.(in Chinese with English abstract).Google Scholar
Kumar, R., Singh, C., Malik, S., Ali, A., Nayital, R.K., (2011). Effect of storage conditions on germinability of Himalayan Cedar (Cedrus deodara Roxb., G. Don) seeds. Indian Forester 137, 10991102.Google Scholar
Li, X.-X., (1995). Fossil Floras of China Through the Geological Ages. Guangdong Science and Technology Press, Guangzhou.Google Scholar
Li, S.-H., Deng, C.-L., Yao, H.-T., Huang, S., Liu, C.-Y., He, H.-Y., Pan, Y.-X., Zhu, R.-X., (2013). Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth 118, 791807.Google Scholar
Lin, L., Bei, F., Song, Z.-Y., Gao, L., Wu, Z., (2000). Biotic characters and environgeological significance in Cenozoic era in Jinggu and Longchuan Basins in Yunnan. Journal of Chengdu University of Technology 27, 1518.(in Chinese with English abstract).Google Scholar
Liu, T.-S., (1971). A Monograph of the Genus Abies . The Department of Forestry College of Agriculture, National Taiwan University, Taipei.Google Scholar
Liu, M.-L., (1990). The Eocene spore pollen assemblages from the Dalianhe Formation, Yilan Coal-Field, Heilongjiang Province. Bulletin of Institute of Shenyang Geology and Mineral Resources, Chinese Academy of Geological Sciences 20, 111137.(in Chinese with English abstract).Google Scholar
Loffet, H.C., (2004). Sur quelques espèces d'arbres de la zone Syro-Palestinienne et Libanaise exportées vers l'Égypte pharaonique. Archaeology and History in Lebanon 19, 1033.(in French).Google Scholar
Magri, D., Parra, I., (2002). Late quaternary western Mediterranean pollen records and African winds. Earth and Planetary Science Letters 200, 401408.Google Scholar
Maheshwari, P., Biswas, C., (1970). Cedrus (Botanical Monograph No. 5). Council of Scientific and Industrial Research, Rafi Marg, New Delhi, India.Google Scholar
Mai, D.H., Velitzelos, E., (1992). Über fossile Pinaceen-Reste im Jungtertiär von Griechenland. Feddes Repertorium 103, 118.(in German with English abstract).CrossRefGoogle Scholar
Meyers, S.R., Hinnov, L.A., (2010). Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise. Paleoceanography 25, PA3207.Google Scholar
Nanjing Institute of Geology and Ministry of Geology and Mineral Resources of PR China (NIGMGMRPRC), ((NIGMGMRPRC), 1982). Palaeontolgical Atlas of East China, Part 3, Volume of Mesozoic and Cenozoic. Geological Publishing House, Beijing.(in Chinese).Google Scholar
Papulov, G.N., Bronnikova, N.J., (1963). On the Lower Cretaceous flora in the middle Urals. Trudy Gorno-Geologicheskogo Instituta, Akademiya Nauk SSSR, Ural'skiy Filial 61, 95100.(in Russian).Google Scholar
Qiao, C.Y., Ran, J.H., Li, Y., Wang, X.Q., (2007). Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Annals of Botany 100, 573580.CrossRefGoogle ScholarPubMed
Quirk, J., McDowell, N.G., Leake, J.R., Hudson, P.J., Beerling, D.J., (2013). Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. American Journal of Botany 100, 582591.Google Scholar
Samylina, V.A., (1988). Arkagalinskaya stratoflora Severo-Vostoka Azii (Arkagalinskaya stratoflora of North-East Asia). Nauka, Leningrad.(in Russian).Google Scholar
Su, T., (2010). On the Establishment of the Leaf Physiognomy — Climate Model and a Study of the Late Pliocene Yangjie Flora, Southwest China (Ph.D. dissertation). Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming.(in Chinese with English abstract).Google Scholar
Su, T., Jacques, F.M.B., Liu, Y.-S., Xiang, J.-Y., Xing, Y.W., Huang, Y.-J., Zhou, Z.-K., (2011). A new Drynaria (Polypodiaceae) from the upper Pliocene of Southwest China. Review of Palaeobotany and Palynology 164, 132142.CrossRefGoogle Scholar
Su, T., Jacques, F.M.B., Spicer, R.A., Liu, Y.-S., Huang, Y.-J., Xing, Y.-W., Zhou, Z.-K., (2013). Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past Discussions 9, 16751701.Google Scholar
Sun, X.-J., Wang, P.-X., (2005). How old is the Asian monsoon system? — Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 181222.CrossRefGoogle Scholar
Tao, J.-R., (2000). The Evolution of the Late Cretaceous-Cenozoic Flora in China. Science Press, Beijing.(in Chinese).Google Scholar
Tao, J.-R., Kong, Z.-C., (1973). The fossil florule and sporo-pollen assemblage of the Shang-In Coal series of Erhyuan, Yunnan. Acta Botanica Sinica 15, 120126.(in Chinese with English abstract).Google Scholar
Terekhova, G.P., Filippova, G.G., (1983). On structure and age of the Poperechenskaya Suite (Pekul'nei Ridge, North-East of USSR). Doklady Academy Nauk SSSR 269, 911914.(in Russian).Google Scholar
Tong, G.-B., Bai, S.-Y., Zhou, S.-J., Zhang, Z.-P., (1990). The characteristics of the pollen spore time series fluctuation and its significance in the geological environments of the Quaternary in Kunming Basin. Acta Botanica Sinica 32, 146156.(in Chinese with English abstract).Google Scholar
Wang, W.-M., (1996). A palynological survey of Neogene strata in Xiaolongtan Basin, Yunnan Province of South China. Acta Botanica Sinica 38, 743748.(in Chinese with English abstract).Google Scholar
Wang, Y., (2006). Yunnan Mountain Climate. Yunnan Science and Technology Press, Kunming.(in Chinese).Google Scholar
Wang, W.-M., Shu, J.-W., (2004). Late Cenozoic palynofloras from Qujing Basin, Yunnan, China. Acta Palaeontologica Sinica 43, 254261.(in Chinese with English abstract).Google Scholar
Ward, P.D., Botha, J., Buick, R., De Kock, M.O., Erwin, D.H., Garrison, G.H., Kirschvink, J.L., Smith, R., (2005). Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307, 709714.Google Scholar
Woodward, F.I., (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge.Google Scholar
Xia, K., Su, T., Liu, Y.-S., Xing, Y.-W., Jacques, F.M.B., Zhou, Z.-K., (2009). Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 8086.Google Scholar
Xiao, X.-Y., Shen, J., Wang, S.-M., Xiao, H.-F., Tong, G.-B., (2009). Climatic change and evolution of the southwest monsoon revealed by pollen records in the Heqing deep drilling core. Acta Palaeontologica Sinica 48, 185193.(in Chinese with English abstract).Google Scholar
Xiao, X.-Y., Shen, J., Wang, S.-M., Xiao, H.-F., Tong, G.-B., (2010). The variation of the southwest monsoon from the high resolution pollen record in Heqing Basin, Yunnan Province, China for the last 2.78 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 287, 4557.CrossRefGoogle Scholar
Xie, S.-P., Sun, B.-N., Wu, J.-Y., Lin, Z.-C., Yan, D.-F., Xiao, L., (2012). Palaeodimatic estimates for the late Pliocene based on leaf physiognomy from western Yunnan, China. Turkish Journal of Earth Sciences 21, 251261.Google Scholar
Xing, Y.-W., Utescher, T., Jacques, F.M.B., Su, T., Liu, Y.-S., Huang, Y.-J., Zhou, Z.-K., (2012). Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 358–360, 1926.Google Scholar
Xu, J.-X., Wang, Y.-F., Du, N.-Q., Zhang, C.-F., (2000). The Neogene pollen/spore flora of Lühe, Yunnan. Acta Botanica Sinica 42, 526532.(in Chinese with English abstract).Google Scholar
Xu, J.-X., Wang, Y.-F., Du, N.-Q., (2003). Late Pliocene vegetation and palaeoclimate of Yangyi and Longling of western Yunnan Province. Journal of Palaeogeography 5, 217223.(in Chinese with English abstract).Google Scholar
Yunnan Provincial Meteorological Bureau (YPMB), (1983). Agro-Climatic Data Sets in Yunnan Province. Yunnan People's Publishing House, Kunming.(in Chinese).Google Scholar
Zhang, Y.-F., Jiang, J.-W., (2010). Sporopollen assemblages and stratigraphical significance of Paleogene Dongying Formation in Nanpu Sag, eastern Heibei Province. Geoscience 24, 205213.(in Chinese with English abstract).Google Scholar
Zhang, S.-Q., Liu, R.-Y., Li, M.-S., (2010). Eocene–Miocene palynological assemblages in Wanchang area of Jilin and their stratigraphic significance. Global Geology 29, 357362.(in Chinese with English abstract).Google Scholar