Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-25T21:41:38.277Z Has data issue: false hasContentIssue false

Insights into the synergistic effects of tectonics and climate from the formation and evolution of the Hongwen allochthonous deposit, southwestern China

Published online by Cambridge University Press:  06 November 2024

Yuchao Li
Affiliation:
College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
Jianping Chen
Affiliation:
College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
Qing Wang*
Affiliation:
College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
Zhihai Li
Affiliation:
Zhejiang Huadong Construction Corporation Limited, POWERCHINA Huadong Engineering Corporation Limited, 310014, Hangzhou, Zhejiang, China
Yansong Zhang
Affiliation:
College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
Jianhua Yan
Affiliation:
College of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
*
*Corresponding author email address: [email protected]

Abstract

The formation and evolution of large-scale deposits generated by mass movement are often closely related to tectonic and climatic conditions. Investigating deposits under the influence of complex geological conditions can aid in reconstructing paleoenvironmental characteristics and fluvial geomorphic evolution. The First Bend of the Yangtze River (FBYR), located in the Jinsha River basin in southwest China, represents a significant section characterized by abundant allochthonous deposits. We conducted a detailed investigation of the Hongwen allochthonous deposit (HAD) and the river sediments in the First Bend. Through terrain interpretation, dating, and paleoenvironmental analysis, the HAD was determined to be a complex deposit with multiple sources and stages (46.4–33.5 ka), formed under the combined influence of tectonic activity and climate. Three mass-movement events occurred during the interglacial stage of the last glacial period or its transitional period, coinciding with the rapid uplift stage of the Tibetan Plateau since the late Pleistocene. Prominent features of this period include significant rainfall and tectonic activities. By dating fluvial sediments and examining the evolution of the HAD, we revealed a river incision rate of 2.30 mm/yr for the Jinsha River, providing a basis for analyzing periodic river cutting and the development pattern of surface processes.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, C.R., Gillespie, A.R., Yuan, H., Sieh, K.E., Buchun, Z., Chengnan, Z., 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Geological Society of America Bulletin 95, 686700.2.0.CO;2>CrossRefGoogle Scholar
Bao, Y., Zhai, S., Chen, J., Xu, P., Sun, X., Zhan, J., Zhang, W., Zhou, X., 2020. The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology 351, 106970. https://doi.org/10.1016/j.geomorph.2019.106970.CrossRefGoogle Scholar
Berger, A., 1978. Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research 9, 139167.CrossRefGoogle Scholar
Burchfiel, B.C., Chen, Z., 2012. Tectonics of the southeastern Tibetan plateau and its adjacent foreland. Geological Society of America Memoir 210, 231 pp.Google Scholar
Chen, J., Dai, F.C., Lv, T.Y., Cui, Z.J., 2013. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages. Quaternary International 298, 107113.CrossRefGoogle Scholar
Chen, J., Zhou, W., Cui, Z., Li, W., Wu, S., Ma, J., 2018. Formation process of a large paleolandslide-dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating. Landslides 15, 23992412.CrossRefGoogle Scholar
Chung, S.L., Lee, T.Y., Lo, C.H., Wang, P.L., Chen, C.Y., Yem, N.T., Hoa, T.T., Genyao, W., 1997. Intraplate extension prior to continental extrusion along the Ailao Shan–Red River shear zone. Geology 25, 311314.2.3.CO;2>CrossRefGoogle Scholar
Costa, J.E., Schuster, R.L., 1988. The formation and failure of natural dams. Geological Society of America Bulletin 100, 10541068.2.3.CO;2>CrossRefGoogle Scholar
Cui, Z.J., Wu, Y.Q., Liu, G.N., Ge, D.K., Pang, Q.Q., Xu, Q.H., 1998. On Kunlun–Yellow River tectonic movement. Science in China (Series D) 41, 592600.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Haneberg, W.C., Caffee, M.W., Dietsch, C., Kamp, U., 2009. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews 2, 10371054.CrossRefGoogle Scholar
Dunning, S.A., 2006. Formation and failure of the Tsatichhu landslide dam, Bhutan. Landslides 3, 107113.CrossRefGoogle Scholar
EPICA community members, 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.CrossRefGoogle Scholar
Fan, X., Dufresne, A., Siva Subramanian, S., Strom, A., Hermanns, R., Tacconi Stefanelli, C., Hewitt, K., et al., 2020. The formation and impact of landslide dams – state of the art. Earth-Science Reviews 203, 103116. https://doi.org/10.1016/j.earscirev.2020.103116.CrossRefGoogle Scholar
Fleming, S.J., 1971. Thermoluminescent dating principles and application. Naturwissenschaften 58, 333338.CrossRefGoogle Scholar
Hao, M., Wang, Q.L., Shen, Z.K., Cui, D., Ji, L.Y., Li, Y.H., Qin, S.L., 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics 632, 281292.CrossRefGoogle Scholar
Haque, U., da Silva, P.F., Devoli, G., Pilz, J., Zhao, B.X., Khaloua, A., Wilopo, W., et al., 2019. The human cost of global warming: deadly landslides and their triggers (1995–2014). Science of The Total Environment 682, 673684.CrossRefGoogle ScholarPubMed
Hermanns, R.L., Niedermann, S., Ivy-Ochs, S., Kubik, P.W., 2004. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) – evidence from surface exposure dating and stratigraphic analyses. Landslides 1, 113122.CrossRefGoogle Scholar
Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides 11, 167194.CrossRefGoogle Scholar
Kirschbaum, D., Kapnick, S.B., Stanley, T., Pascale, S., 2020. Changes in extreme precipitation and landslides over high mountain Asia. Geophysical Research Letters 47, e2019GL085347. https://doi.org/10.1029/2019GL085347.CrossRefGoogle Scholar
Kong, P., Na, C.G., Fink, D., Zhao, X.T., Xiao, W., 2009. Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River. Quaternary Science Reviews 28, 32243235.CrossRefGoogle Scholar
Kong, P., Zheng, Y., Caffee, M.W., 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry Geophysics Geosystems 13, Q06017. https://doi.org/10.1029/2012GC004140.CrossRefGoogle Scholar
Korup, O., Clague, J.J., 2009. Natural hazards, extreme events, and mountain topography. Quaternary Science Reviews 28, 977990.CrossRefGoogle Scholar
Korup, O., Montomery, D.R., 2008. Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo Gorge. Nature 455, 786789.CrossRefGoogle ScholarPubMed
Korup, O., Gorum, T., Hayakawa, Y., 2012. Without power? Landslide inventories in the face of climate change. Earth Surface Processes and Landforms 37, 9299.CrossRefGoogle Scholar
Lai, Q.Y., Zhao, J.J., Huang, R.Q., Wang, D.J., Ju, N.P., Li, Q.M., Wang, Y.S., Xu, Q., Zhao, W.H., 2022. Formation mechanism and evolution process of the Chada rock avalanche in Southeast Tibet, China. Landslides 19, 331349.CrossRefGoogle Scholar
Li, J.J., Fang, X.M., Ma, H.Z., Zhu, J.J., Pan, B.T., Chen, H.L., 1996. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Science in China (Series D) 39, 380390.Google Scholar
Li, J.J., Zhou, S.Z., Zhao, Z.J., Zhang, J., 2015. The Qingzang movement: the major uplift of the Qinghai–Tibetan Plateau. Science China-Earth Sciences 58, 21132122.CrossRefGoogle Scholar
Li, Y.C., Chen, J.P., Zhou, F.J., Song, S.Y., Zhang, Y.W., Gu, F.F., Cao, C., 2020. Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 368, 107351. https://doi.org/10.1016/j.geomorph.2020.107351.CrossRefGoogle Scholar
Li, Y.C., Chen, J.P., Li, Z.H., Han, X.D., Zhai, S.J., Li, Y.C., Zhang, Y.W., Gu, F.F., 2022a. Comprehensive analysis of a paleo-landslide damming event on the upper reach of the Jinsha River, SE Tibetan Plateau. Bulletin of Engineering Geology and the Environment 81, 334. https://doi.org/10.1007/s10064-022-02791-z.CrossRefGoogle Scholar
Li, Y.C., Chen, J.P., Yan, J.H., Zhou, F.J., Wang, Q., Li, Z.H., Zhang, Y.S., 2022b. Formation and evolution of a giant old deposit in the First Bend of the Yangtze River on the southeastern margin of the Qinghai–Tibet Plateau. Catena 213, 106138. https://doi.org/10.1016/j.catena.2022.106138.CrossRefGoogle Scholar
Li, Y.C., Chen, J.P., Wang, Q., Chen, H.E., Bao, Y.D., Yan, J.H., Li, Z.H., 2023. Climate-driven formation of mass movements across the Tibetan Plateau. Catena 236, 107721. https://doi.org/10.1016/j.catena.2023.107721.Google Scholar
Lin, Q.G., Steger, S., Pittore, M., Zhang, J.H., Wang, L.B., Jiang, T., Wang, Y., 2022. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Science of The Total Environment 850, 158049. https://doi.org/10.1016/j.scitotenv.2022.158049.CrossRefGoogle Scholar
Ming, Q.Z., Shi, Z.T., 2006. The forming factor analysis for the First Bend of Yangtse River. IEEE International Symposium on Geoscience and Remote Sensing 1–8, 15871590. https://doi.org/10.1109/IGARSS.2006.409.CrossRefGoogle Scholar
Owen, L.A., Kamp, U., Khattak, G.A., Harp, E., Keefer, D.K., Bauer, M.A., 2008. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94, 19.CrossRefGoogle Scholar
Reznichenko, N.V., Davies, T.R.H., Shulmeister, J., Larsen, S.H., 2012. A new technique for identifying rock avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology 40, 319322.CrossRefGoogle Scholar
Searle, M.P., Yeh, M.W., Lin, T.H., Chung, S.L., 2010. Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere 6, 316338.CrossRefGoogle Scholar
Shi, Y.F., Liu, X.D., Li, B.Y., Yao, T.D., 1999. A very strong summer monsoon event during 30–40 ka BP in the Qinghai Xizang (Tibet) Plateau and its relation to precessional cycle. Chinese Science Bulletin 44, 18511857.CrossRefGoogle Scholar
Shi, Y.F., Yu, G., Liu, X.D., Li, B.Y., Yan, T.D., 2001. Reconstruction of the 40–30 ka BP enhanced India Monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography Palaeoclimatology Palaeoecology 169, 6983.CrossRefGoogle Scholar
Shulmeister, J., Davies, T.R., Evans, D.J.A., Hyatt, O.M., Tovar, D.S., 2009. Catastrophic landslides, glacier behaviour and moraine formation – a view from an active plate margin. Quaternary Science Reviews 28, 10851096.CrossRefGoogle Scholar
Strom, A.L., 2004. Rock avalanches of the Ardon River valley at the southern foot of the Rocky Range, Northern Caucasus, North Osetia. Landslides 1, 237241.CrossRefGoogle Scholar
Tang, Y., Hu, C.Z., Tian, Q.J., Wang, L., Yang, P.X., Xiong, R.W., 2014. Preliminary study on paleo-earthquakes in Jianchuan section of Longpan–Qiaohou fault, Yunnan Province. Earthquake 34, 117124. [in Chinese]Google Scholar
Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the mechanics of the collision between India and Asia. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geological Society of London, Special Publication 19, 113157.Google Scholar
Thompson, L.G., Yao, T., Davis, M.E., 1997. Tropical climate instability the last glacial cycle from a Qinghai–Tibetan ice core. Science 276, 18211825.CrossRefGoogle Scholar
Tong, K.Y., 2019. Evolution characteristics of the landform of the first bay of the Yangtze River. Master's thesis, China University of Geosciences, Wuhan, China. [In Chinese with English abstract]Google Scholar
Trauth, M.H., Strecker, M.R., 1999. Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 yr B.P. in northwestern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 153, 277287.CrossRefGoogle Scholar
Wang, E., Burchfiel, B.C., 2000. Late Cenozoic to Holocene deformation in southeastern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of Tibetan Plateau. Geological Society of America Bulletin 112, 413423.2.0.CO;2>CrossRefGoogle Scholar
Wang, P.F., Chen, J., Dai, F.C., Long, W., Xu, C., 2014. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: implications to Holocene tectonic perturbations. Geomorphology 217, 193203.CrossRefGoogle Scholar
Wei, H.H., Wang, E., Wu, G.L., Meng, K., 2016. No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet. Gondwana Research 32, 93104.CrossRefGoogle Scholar
Wu, Q.L., Zhao, Z.J., Liu, L., Granger, D.E., Wang, H., Cohen, D.J., Wu, X.H., et al., 2016. Outburst flood at 1920 BCE supports historicity of China's Great Flood and the Xia Dynasty. Science 353, 579582CrossRefGoogle Scholar
Xiao, D., Zhao, P., Wang, Y., Zhou, X., 2013. Modeling the climatic implications and indicative senses of the Guliya δ18O-temperature proxy record to the ocean–atmosphere system during the past 130 ka. Climate of the Past 9, 735747.CrossRefGoogle Scholar
Xiao, X.C., Wang, J., 1998. A brief review of tectonic evolution and uplift of the Qinghai–Tibet Plateau. Geological Review 44, 372382.Google Scholar
Xu, H.Y., Jiang, H.C., Yu, S., Yang, H.L., and Chen, J., 2015. OSL and pollen concentrate 14C dating of dammed lake sediments at Maoxian, east Tibet, and implications for two historical earthquakes in AD 638 and 952. Quaternary International 371, 290299.CrossRefGoogle Scholar
Yan, J.H., Chen, J.P., Zhou, F.J., Li, Y.C., Zhang, Y.W., Gu, F.F., Zhang, Y.S., et al., 2022. Numerical simulation of the Rongcharong paleolandslide river-blocking event: implication for the longevity of the landslide dam. Landslides 19, 13391356.CrossRefGoogle Scholar
Zhan, J.W., Chen, J.P., Zhang, W., Han, X.D., 2018. Mass movements along a rapidly uplifting river valley: an example from the upper Jinsha River, southeast margin of the Tibetan Plateau. Environment Earth Science 77, 634. https://doi.org/10.1007/s12665-018-7825-4.CrossRefGoogle Scholar
Zhang, D.F., Liu, F.Q., Bing, J.M., 2000. Eco-environmental effects of the Qinghai–Tibet Plateau uplift during the Quaternary in China. Environmental Geology 39, 13521358.CrossRefGoogle Scholar
Zhang, W., Wang, J., Chen, J., Soltanian, M. R., Dai, Z., WoldeGabriel, G., 2022. Mass-wasting-inferred dramatic variability of 130,000-year Indian summer monsoon intensity from deposits in the Southeast Tibetan Plateau. Geophysical Research Letters 49, e2021GL097301. https://doi.org/10.1029/2021GL097301.Google Scholar
Zhang, Y.S., Chen, J.P., Zhou, F.J., Bao, Y.D., Yan, J.H., Zhang, Y.W., Li, Y.C., Gu, F.F., Wang, Q., 2022. Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River, SE Tibetan Plateau. Landslides 19, 941962.CrossRefGoogle Scholar
Zhao, B., Su, L.J., Xu, Q., Li, W.L., Xu, C., Wang, Y.S., 2023. A review of recent earthquake-induced landslides on the Tibetan Plateau. Earth-Science Reviews 244, 104534. https://doi.org/10.1016/j.earscirev.2023.104534.CrossRefGoogle Scholar
Zhou, S.Z., Wang, X.L., Wang, J., Xu, L.B., 2006. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan Plateau. Quaternary International 154/155, 4451.CrossRefGoogle Scholar