Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T16:24:40.840Z Has data issue: false hasContentIssue false

The Influence of Pretreatment Chemistry on the Radiocarbon Dating of Campanian Ignimbrite-Aged Charcoal from Kostenki 14 (Russia)

Published online by Cambridge University Press:  20 January 2017

Katerina Douka*
Affiliation:
Oxford Radiocarbon Accelerator Unit (ORAU), Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
Thomas Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit (ORAU), Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
Andrey Sinitsyn
Affiliation:
Institute of the History of Material Culture, Russian Academy of Sciences, Dvortsovaya nab. 18, 191186, St. Petersburg, Russia
*
*Corresponding author. Fax: +44 1865 285220.E-mail address:[email protected] (K. Douka).

Abstract

The presence of an independently dated marker in an archaeological site offers rare opportunities for assessing the reliability of radiocarbon dates, especially when these are close to the age limit of the technique. Two different pretreatment protocols (routine ABA and more rigorous ABOx-SC) were employed in the chemical preparation of the same charcoal sample from a layer closely associated to the Campanian Ignimbrite tephra at the Russian Palaeolithic site of Kostenki 14 (Markina Gora). The ABA-treated fraction gave an age of ∽33 14C ka BP, comparable to a previous determination from the same layer, whereas the ABOx-SC produced an older age of ∽35 14C ka BP. This is the first radiocarbon determination of an archaeological sample to provide an age consistent with the "calendar" age for the CI tephra marker.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anikovich, M.V., Sinitsyn, A.A., Hoffecker, J.F., Holliday, V.T., Popov, V.V., Lisitsyn, S.N., Forman, S.L., Levkovskaya, G.M., Pospelova, G.A., Kuz ' mina, I.E., Burova, N.D., Goldberg, P., Macphail, R.I., Giaccio, B., Praslov, N.D., (2007). Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315, 223315.Google Scholar
Bird, M., Ayliffe, L.K., Fifield, K., Cresswell, R., Turney, C., (1999). Radiocarbon dating of "old" charcoal using a wet oxidation-stepped combustion procedure. Radiocarbon 41, 2, 127140.Google Scholar
Bird, M.I., Fifield, L.K., Santos, G.M., Beaumont, P.B., Zhou, Y., di Tada, M.L., Hausladen, P.A., (2003). Radiocarbon dating from 40 to 60 ka BP at Border Cave, South Africa. Quaternary Science Reviews 22, 943947.Google Scholar
Blockley, S.P.E., Bronk Ramsey, C., Higham, T.F.G., (2008). The Middle to Upper Palaeolithic transition: dating, stratigraphy and isochronous markers. Journal of Human Evolution 55, 764771.CrossRefGoogle Scholar
Bronk Ramsey, C., (2001). Development of the radiocarbon calibration program OxCal. Radiocarbon 43, 2A, 355363.CrossRefGoogle Scholar
Bronk Ramsey, C., (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, Radiocarbon 51, 1, 337360.CrossRefGoogle Scholar
Chappell, J.M.A., Head, M.J., Magee, J.W., (1996). Beyond the radiocarbon limit in Australian archaeology and Quaternary research. Antiquity 70, 543552.Google Scholar
Conard, N.J., Bolus, M., (2003). Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: new results and new challenges. Journal of Human Evolution 44, 331371.CrossRefGoogle ScholarPubMed
Conard, N.J., Bolus, M., (2008). Radiocarbon dating the late Middle Paleolithic and the Aurignacian of the Swabian Jura. Journal of Human Evolution 55, 886897.CrossRefGoogle ScholarPubMed
Damblon, F., Haesaerts, P., van der Plicht, J., (1996). New datings and considerations on the chronology of Upper Palaeolithic sites in the Great Eurasiatic Plain. Pr"histoire Europ"enne 9, 177231.Google Scholar
De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson, W.A., Spera, F.J., Belkin, H.E., (2001). New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73, 4765.Google Scholar
Fedele, F.G., Giaccio, B., Isaia, R., Orsi, G., (2003). The Campanian Ignimbrite eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-resolution investigation. AGU Geophysical Monograph, Washington, USA., 301325.Google Scholar
Fedele, F.G., Giaccio, B., Hajdas, I., (2008). Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. Journal of Human Evolution 55, 834857.CrossRefGoogle Scholar
Giaccio, B., Hajdas, I., Peresani, M., Fedele, F.G., Isaia, R., (2006). The Campanian Ignimbrite tephra and its relevance for the timing of the Middle to Upper Palaeolithic shift. Conard, N.J., When Neanderthals and Modern Humans Met Kerns Verlag, T"bingen., 343375.Google Scholar
Giaccio, B., Isaia, R., Fedele, F.G., Di Canzio, E., Hoffercker, J., Ronchitelli, A., Sinitsyn, A.A., Anikovich, M., Lisitsyn, S.N., Popov, V.V., (2008). The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Paleolithic in southern Italy and eastern Europe. Journal of Volcanology and Geothermal Research 177, 208226.CrossRefGoogle Scholar
Haesaerts, P., Damblon, F., Sinitsyn, A., van der Plicht, J., (2004). Kostenki 14 (Voronezh, Central Russia): new data on stratigraphy and radiocarbon chronology. Acts of the XIVth UISPP Congress, Univ. Li"ge, Belgium, 2"8 September 2001. BAR International Series, Oxford 1240, 169180.Google Scholar
Higham, T.F.G, Barton, H., Turney, C.M.T., Barker, G., Bronk Ramsey, C., Brock, F., (2008). Radiocarbon dating of charcoal from tropical sequences: results from the Niah Great Cave, Sarawak and their broader implications. Journal of Quaternary Science 24, 189197.Google Scholar
Higham, T., Brock, F., Peresani, M., Broglio, A., Wood, R., Douka, K., (2009). Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28, 12571267.Google Scholar
Hoffecker, J.F., Anikovich, M.V., Sinitsyn, A.A., Holliday, V.T., Levkovskaya, G.M., Pospelova, G.A., Forman, S.L., Giaccio, B., (2008). From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle"Upper Paleolithic transition in Eastern Europe. Journal of Human Evolution 55, 858870.CrossRefGoogle Scholar
Holliday, V.T, Hoffecker, J.F., Goldberg, P., Macphail, R.I., Forman, S.L., Anikovich, M., Sinitsyn, A., (2007). Geoarchaeology of the Kostenki-Borshchevo Sites, Don River, Russia. Geoarchaeology 22, 181228.Google Scholar
J"ris, O., Street, M., (2008). At the end of the 14C time scale"the Middle to Upper Paleolithic record of Western Eurasia. Journal of Human Evolution 55, 782802.Google Scholar
Mellars, P., Tixier, J., (1989). Radiocarbon-accelerator dating of Ksar "Aqil (Lebanon) and the chronology of the Upper Paleolithic sequence in the Middle East. Antiquity 63, 761768.Google Scholar
Praslov, N.D., Rogachev, A.N., (1982). Paleolit Kostenkovsko-Borshchevskogo raiona na Donu 1879"1979. Leningrad, Nauka.Google Scholar
Pyle, D.M., Ricketts, G.D., Margari, V., van Andel, T., Sinistyn, A.A., Praslov, N.D., Lisitsyn, S., (2006). Wide dispersal and deposition of distal tephra during the Pleistocene "Campanian Ignimbrite/Y5" eruption, Italy. Quaternary Science Reviews 25, 27132728.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0"50,000 years cal BP. Radiocarbon 51, 11111150.CrossRefGoogle Scholar
Roebroeks, W., (2008). Time for the Middle-to-Upper Paleolithic Transition in Europe. Journal of Human Evolution 55, 918926.Google Scholar
Santos, G.M., Bird, M.I., Pillans, B., Fifield, L.K., Alloway, B.V., Chappell, J., Hausladen, P.A., Arneth, A., (2001). Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43, 239248.Google Scholar
Santos, G.M., Bird, M.I., Parenti, F., Fifield, L.K., Guidon, N., Hausladen, P.A., (2003). A revised chronology of the lowest occupation layer of Pedra Furada Rock Shelter, Piau?, Brazil: the Pleistocene peopling of the Americas. Quaternary Science Reviews 22, 23032310.Google Scholar
Sinitsyn, A.A., (1996). Kostenki 14 (Markina Gora): data, problems, and perspectives. Pr"histoire Europ"enne 9, 273313.Google Scholar
Sinitsyn, A.A., (2003). A Palaeolithic "Pompeii" at Kostenki, Russia. Antiquity 77, 914.Google Scholar
Sinitsyn, A.A., Hoffecker, J.F., (2006). Radiocarbon dating and chronology of the early Upper Paleolithic at Kostenki (Russia). Quaternary International 152"153, 175185.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Rothlisberger, R., Steffensen, J.P., Vinther, B.M., (2006). The Greenland Ice Core Chronology 2005, 15"42 ka: Part 2. Comparison to other records. Quaternary Science Reviews 25, 32583267.Google Scholar
Turney, C.S.M., Bird, M.I., Fifield, L.K., Kershaw, A.P., Cresswell, R.G., Santos, G.M., di Tada, M.L., Hausladen, P.A., Youping, Z., (2001). Development of a robust 14C chronology for Lynch's Crater (North Queensland, Australia) using different pretreatment strategies. Radiocarbon 43, 4554.CrossRefGoogle Scholar