Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T08:57:54.257Z Has data issue: false hasContentIssue false

Impact of earthquakes on agriculture during the Roman–Byzantine period from pollen records of the Dead Sea laminated sediment

Published online by Cambridge University Press:  20 January 2017

Suzanne A.G. Leroy*
Affiliation:
Institute for the Environment, Brunel University, Uxbridge (West London) UB8 3PH, UK
Shmuel Marco
Affiliation:
Department of Geophysics and Planetary Sciences, University of Tel-Aviv, Tel-Aviv 69978, Israel
Revital Bookman
Affiliation:
Department of Marine Geosciences, University of Haifa, Haifa 31905, Israel
Charlotte S. Miller
Affiliation:
Institute for the Environment, Brunel University, Uxbridge (West London) UB8 3PH, UK
*
*Corresponding author. Fax: +44 1895 269 761.E-mail address:[email protected] (S.A.G. Leroy).

Abstract

The Dead Sea region holds the archives of a complex relationship between an ever-changing nature and ancient civilisations. Regional pollen diagrams show a Roman"Byzantine period standing out in the recent millennia by its wetter climate that allowed intensive arboriculture. During that period, the Dead Sea formed laminites that display mostly a seasonal character. A multidisciplinary study focused on two earthquakes, 31 BC and AD 363, recorded as seismites in the Ze"elim gully A unit III which has been well dated by radiocarbon in a previous study. The sampling of the sediment was done at an annual resolution starting from a few years before and finishing a decade after each earthquake. A clear drop in agricultural indicators (especially Olea and cereals) is shown. These pollen indicators mostly reflect human activities in the Judean Hills and coastal oases. Agriculture was disturbed in large part of the rift valley where earthquake damage affected irrigation and access to the fields. It took 4 to 5 yr to resume agriculture to previous conditions. Earthquakes must be seen as contributors to factors damaging societies. If combined with other factors such as climatic aridification, disease epidemics and political upheaval, they may lead to civilisation collapse.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnon, A., Migowski, C., Marco, S., (2006). Intraclast breccias in laminated sequences reviewed: recorders of paleo-earthquakes. Enzel, Y., Agnon, A., Stein, M., New Frontiers in Dead Sea Paleoenvironmental Research. Geological Society of America Special Publication. 195214.Google Scholar
Al-Eisawi, D., Dajani, B., (1988). Airborne pollen of Jordan. Grana 27, 219227.CrossRefGoogle Scholar
Ambraseys, N.N., Jackson, J.A., (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International 133, 390406.CrossRefGoogle Scholar
Amiran, D.H.K., Arieh, E., Turcotte, T., (1994). Earthquakes in Israel and adjacent areas: macrosesismic observations sine 100 BCE. Israel Exploration Journal 44, 260305.Google Scholar
Anati, D., (1993). How much salt precipitates from the brines of a hypersaline lake? The Dead Sea as a case study. Geochimica et Cosmochimica Acta 57, 21912196.CrossRefGoogle Scholar
Anati, D.A., Gavrieli, I., Oren, A., (1995). The residual effect of the 1991-93 rainy winters on the Dead Sea stratification. Israel Journal of Earth Sciences 44, 6370.Google Scholar
Ben-Avraham, Z., Lazar, M., Schattner, U., Marco, S., (2005). The Dead Sea Fault and its effect on civilization. Wenzel, F., Perspectives in Modern Seismology. Lecture Notes in Earth Sciences 105, Springer Verlag Heidelberg. 147170.Google Scholar
Ben-Itzhak, L., Gvirtzman, H., (2005). Groundwater flow along and across structural folding: an example from the Judean Desert. Israel Journal of Hydrology 312, 5169.CrossRefGoogle Scholar
Ben-Menahem, A., (1991). Four thousand years of seismicity along the Dead Sea rift. Journal of Geophysical Research 96, B1220,195"20,216.CrossRefGoogle Scholar
Ben Moshe, L., Haviv, I., Enzel, Y., Zilberman, E., Matmon, A., (2008). Incision of alluvial channels in response to a continuous base level fall: field characterization, modeling, and validation along the Dead Sea. Geomorphology 93, 524536.CrossRefGoogle Scholar
Bennett, K., (2007). Documentation for Psimpoll and Pscomb. http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html, accessed on 9 Feb. 2009.Google Scholar
Bentor, Y.K., Vroman, A., (1960). The geological map of Israel, 1:100,000. Sheet 16, Mt. Sedom: Jerusalem. Geological Survey of Israel, 117.Google Scholar
Bookman (Ken-Tor), R., Enzel, Y., Agnon, A., Stein, M., (2004). Late Holocene lake levels of the Dead Sea. Geological Society American Bulletin 116, 5/6, 555.CrossRefGoogle Scholar
Bookman, R., Bartov, Y., Enzel, Y., Stein, M., (2006). Quaternary lake levels in the Dead Sea basin: two centuries of research. Enzel, Y., Agnon, A., Stein, M., New Frontiers in Dead Sea Paleoenvironmental Research. Geological Society of America, Special paper 401. 155170.Google Scholar
Cowan, H.A., McGlone, M.S., (1991). Late Holocene displacements and characteristic earthquakes on the Hope River segment of the Hope Fault, New Zealand. Journal Royal Society New Zealand 21, 373384.CrossRefGoogle Scholar
Dayan, U., Morin, E., (2006). Flash flood-producing rainstorms over the Dead Sea, Israel: a review. Enzel, Y., Agnon, A., Stein, M., New Frontiers in Dead Sea Paleoenvironmental Research. Geological Society of America, Special Paper 401. 5362.Google Scholar
Ellenblum, R., Marco, S., Agnon, A., Rockwell, T., Boas, A., (1998). Crusader castle torn apart by earthquake at dawn, 20 May 1202. Geology 26, 303306.2.3.CO;2>CrossRefGoogle Scholar
El-Naqa, A., (1993). Hydrological and hydrogeological characteristics of Wadi el Mujib catchment area. Jordan. Environmental Geology 22, 257271.CrossRefGoogle Scholar
Enzel, Y., Bookman (Ken-Tor), R., Sharon, D., Gvirtzmann, H., Dayan, U., Ziv, B., Stein, M., (2003). Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60, 263273.CrossRefGoogle Scholar
Feinbrun, N., Rahat, A., Tas, J., (1959). Further studies in atmospheric pollen in Jerusalem. Bulletin Research Council 8D, 3140.Google Scholar
Fernandez-Mensaque, P.C., Gonz"lez Minero, F.J., Morales, J., Tomas, C., (1998). Forecasting olive (Olea europaea) crop production by monitoring airborne pollen. Aerobiologia 14, 185190.CrossRefGoogle Scholar
Flavius, J., (1982). The Jewish War. Zondervan, Grand Rapids, Michigan. Google Scholar
Ford, J.D., Smit, B., Wandel, J., (2006). Vulnerability to climate change in the Arctic: a case study from Arctic Bay, Canada. Global Environmental Change 16, 145160.CrossRefGoogle Scholar
Garfunkel, Z., (1981). Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80, 81108.CrossRefGoogle Scholar
Gertman, I, Hecht, A., (2002). The Dead Sea hydrography from 1992 to 2000. Journal of Marine Systems 35, 169181.CrossRefGoogle Scholar
Guidoboni, E., Bernardini, F., Comastri, A., (2004). The 1138"1139 and 1156"1159 destructive seismic crises in Syria, south-eastern Turkey and northern Lebanon. Journal of Seismology 8, 105127.CrossRefGoogle Scholar
Guidoboni, E., Comastri, A., Traina, G., (1994). Catalogue of Ancient Earthquakes in the Mediterranean Area Up to the 10th Century. Istituto Nazionale di Geofisica, Bologna. Google Scholar
Hadas, G., (2008). Irrigation agriculture in the oasis of Ein Gedi, Israel, and its parallels in oases around the Dead Sea in the Roman and Byzantine periods. Hermon, E., L"eau comme patrimoine. Les presses de l"Universit" de Laval, 413428.Google Scholar
Harland, P.A., (2002). The economy of first century Palestine: the state of scholarly discussion. Blasi, A.J., Turcotte, P.-A., Duhaime, J., Handbook of Early Christianity: Social Science Approaches. Alta Mira Press, Walnut Creek, CA., 511527.Google Scholar
Haynes, J., Niemi, T.M., Atallah, M., (2006). Evidence for ground-rupturing earthquakes on the Northern Wadi Araba fault at the archaeological site of Qasr Tilah, Dead Sea transform fault system, Jordan. Journal of Seismology 10, 415430.CrossRefGoogle Scholar
Heim, C., (1998). Holoz"ne Sedimente aus dem Toten Meer als Pal"oklima-Indikatoren. Scientific Technical Reports, GeoForschungsZentrum Potsdam 98/12.Google Scholar
Heim, C., Nowaczyk, N., Negendank, J., Leroy, S.A.G., Ben-Avraham, Z., (1997). Middle-East desertification: evidence from the Dead Sea. Naturwissenschaften 84, 398401.CrossRefGoogle Scholar
Hirschfeld, Y., (2004). A climatic change in the early Byzantine period? Some archaeological evidence. Palestine Exploration Quarterly 136, 2, 133149.CrossRefGoogle Scholar
Hirschfeld, Y., (2006). The crisis of the sixth century: climatic change, natural disasters and the plague. Mediterranean Archaeology and Archaeometry 6, 1932.Google Scholar
Horowitz, A., (1979). The Quaternary of Israel. Academic Press, New York. Google Scholar
Kantor, Z., Frank, M., Hoch-Kantor, D., Barkai-Golan, R., Marian, D., Schachnner, E., Kessler, A., de Vries, A., (1966). Airborne allergens and clinical response of asthmatics in Arad, a new town in a desert area in Israel. Journal of Allergy 37, 2, 6574.CrossRefGoogle Scholar
Ken-Tor, R., Enzel, Y., Stein, M., Marco, S., Negendank, J., (2001a). High-resolution geological record of historic earthquakes in the Dead Sea basin. Journal of Geophysical Research 106, B2, 22212234.CrossRefGoogle Scholar
Ken-Tor, R., Stein, M., Enzel, Y., Agnon, A., Marco, S., Negendank, J.F.W., (2001b). Precision of calibrated radiocarbon ages of historic earthquakes in the Dead Sea basin. Radiocarbon 43, 3, 13711382.CrossRefGoogle Scholar
Kutiel, P., Lavee, H., Shoshany, M., (1995). Influence of a climatic gradient upon vegetation dynamics along a Mediterranean-arid transect. Journal of Biogeography 22, 10651071.CrossRefGoogle Scholar
Leroy, S.A.G., (2006). From natural hazard to environmental catastrophe, past and present. Quaternary International 158, 412.CrossRefGoogle Scholar
Leroy, S.A.G., (2010). Pollen analysis of core DS7-1SC (Dead Sea) showing intertwined effects of climatic change and human activities in the Late Holocene. Journal of Archaeological Science 37, 2, 306316.CrossRefGoogle Scholar
Leroy, S.A.G., Boyraz, S., G"rb"z, A., (2009). High-resolution palynological analysis in Lake Sapanca as a tool to detect earthquakes on the North Anatolian Fault over the last 55 years. Quaternary Science Reviews 28, 26162632.CrossRefGoogle Scholar
Lotter, A.F., (1991). Absolute dating of the late-glacial period in Switzerland using annually laminated sediments. Quaternary Research 35, 321330.CrossRefGoogle Scholar
Magaritz, M., Rahner, S., Yechieli, Y., Krishnamurthy, R.V., (1991). 13C/12C ratio in organic matter from the Dead Sea area: paleoclimatic interpretation. Naturwissenschaften 78, 453455.CrossRefGoogle Scholar
Makhzoumi, J.M., (1997). The changing role of rural landscapes: olive and carob multi-use tree plantations in the semi-arid Mediterranean. Landscape and Urban Planning 37, 115122.CrossRefGoogle Scholar
Marco, S., (2008). Recognition of earthquake-related damage in archaeological sites: Examples from the Dead Sea fault zone. Tectonophysics 453, 148156.CrossRefGoogle Scholar
Marco, S., Agnon, A., (1995). Prehistoric earthquake deformations near Masada, Dead Sea graben. Geology 23, 8, 695698.2.3.CO;2>CrossRefGoogle Scholar
Mathewes, R.W., Clague, J.J., (1994). Detection of large prehistoric earthquakes in the Pacific Northwest by microfossil analysis. Science 264, 688691.CrossRefGoogle ScholarPubMed
Meghraoui, M., Gomez, F., Sbeinati, R., Van der Woerd, J., Mouty, M., Nasser, A., Darkal Radwan, Y., Layyous, I., Al Najjar, H., Darawcheh, R., Hijazi, F., AlGhazzi, R., Barazangi, M., (2003). Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea fault in Syria. Earth and Planetary Science Letters 210, 3552.CrossRefGoogle Scholar
Migowski, C., Agnon, A., Bookman, R., Negendank, J.F.W., Stein, M., (2004). Recurrence pattern of Holocene earthquakes along the Dead Sea Transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters 222, 301314.CrossRefGoogle Scholar
Mirecki, J.E., (1996). Recognition of the 1811"1812 New Madrid earthquakes in Reelfoot Lake, Tennessee sediments using pollen data. Journal of Paleolimnology 15, 183191.CrossRefGoogle Scholar
Neumann, F.H., Kagan, E.J., Schwab, M.J., Stein, M., (2007). Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea. Quaternary Science Reviews 26, 14761498.CrossRefGoogle Scholar
Neumann, F.H., Kagan, E.J., Stein, M., Agnon, A., (2009a). Assessment of the effect of earthquake activity on regional vegetation"high-resolution pollen study of the Ein Feshka section, Holocene Dead Sea. Review of Palaeobotany and Palynology online .CrossRefGoogle Scholar
Neumann, F.H., Kagan, E.J., Leroy, S.A.G., Baruch, U., (2009b). Vegetation history and climate fluctuations on a transect along the Dead Sea west shore and their impact on past societies over the last 3500 years. Journal of Arid Environments .Google Scholar
Niemi, T.M., Ben-Avraham, Z., (1997). Active tectonics in the Dead Sea Basin. Niemi, T.M., Ben-Avraham, Z., Gat, J., The Dead Sea: The Lake and Its Settings. Oxford University Press, New York., 7381.Google Scholar
Nur, A., Burgess, D., (2008). Apocalypse: Earthquakes, Archaeology and the Wrath of God. Princeton University Press, . CrossRefGoogle Scholar
Nur, A., Cline, E.H., (2000). Poseidon"s horses: plate tectonics and earthquake storms in the Late Bronze Age Aegean and Eastern Mediterranean. Journal of Archaeological Science 27, 4363.CrossRefGoogle Scholar
Pennington, W., (1979). The origin of pollen in lake sediments: an enclosed lake compared with one receiving inflow streams. New Phytologist 83, 189213.CrossRefGoogle Scholar
Reches, Z., Hoexter, D.F., (1981). Holocenic seismic and tectonic activity in the Dead Sea area. Tectonophysics 80, 235254.CrossRefGoogle Scholar
Reid, I., Frostick, L., (1993). Late Pleistocene rhythmite sedimentation at the margin of the Dead Sea Trough: a guide to palaeoflood frequency. McManus, J., Duck, R., Geomorphology and Sedimentology of Lakes and Reservoirs. J. Wiley and sons, 259273.Google Scholar
Rossignol, M., (1969). S"dimentation pollinique r"cente dans la Mer Morte. Pollen et Spores 9, 1738.Google Scholar
Russell, K., (1980). The earthquake of May 19, AD 363. Bulletin American School Oriental Research 28, 4764.CrossRefGoogle Scholar
Schwab, M.J., Werner, P., Dulski, P., McGee, E., Nowaczyk, N., Bertrand, S., Leroy, S.A.G., (2009). Palaeolimnology of Lake Sapanca and identification of historic earthquake signals, Northern Anatolian Fault Zone (Turkey). Quaternary Science Reviews 28, 9911005.CrossRefGoogle Scholar
Similox-Tohon, D., Sintubin, M., Muchez, Ph., Verhaert, G., Vanneste, K., Fernandez, M., Vandycke, S., Vanhaverbeke, H., Waelkens, M., (2006). The identification of an active fault by a multidisciplinary study at the archaeological site of Sagalassos (SW Turkey). Tectonophysics 420, 371387.CrossRefGoogle Scholar
Stiros, S.C., (2001). The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. Journal of Structural Geology 23, 545562.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000"0 cal BP. Radiocarbon 40, 3, 10411083.CrossRefGoogle Scholar
Terral, J.-F., (2000). Exploitation and management of the olive tree during prehistoric times in the Mediterranean France and Spain. Journal of Archaeological Science 27, 127133.CrossRefGoogle Scholar
Thomas, R., Niemi, T.M., Parker, S.T., (2007). Structural damage from earthquakes in the 2nd"9th Century at the archaeological site of Aila in Aqaba, Jordan. Bulletin of the American School of Oriental Research 346, 5977.CrossRefGoogle Scholar
Waelkens, M., Sintubin, M., Muchez, Ph., Paulissen, E., (2000). Archaeological, geomorphological and geological evidence for a major earthquake at Sagalassos (SW Turkey) around the middle of the seventh century AD. McGuire, B., Griffiths, D., Stewart, I., The Archaeology of Geological Catastrophes. Geological Society, London, Special Publications, 171. 373383.CrossRefGoogle Scholar
Warren, J.K., (2006). Evaporites: Sediments, Resources and Hydrocarbons. Springer Verlag, Berlin, Heidelberg, New York. CrossRefGoogle Scholar
Wechsler, N, Katz, O, Dray, Y, Gonen, I, Marco, S., (2008). Estimating location and size of historical earthquake by combining archaeology and geology in Um-El-Kanatir, Dead Sea Transform. Natural Hazards accepted.Google Scholar
Zilberman, E., Amit, R., Porat, N., Enzel, Y., Avner, U., (2005). Surface ruptures induced by the devastating 1068 AD earthquake in the southern Arava valley, Dead Sea Rift, Israel. Tectonophysics 408, 7999.CrossRefGoogle Scholar
Zohary, M., Orshansky, G., (1949). Structure and ecology of the vegetation in the Dead Sea region of Palestine. Journal of Botany 4, 177206.Google Scholar
Supplementary material: PDF

Leroy et al. Supplementary Material

Supplementary Material

Download Leroy et al. Supplementary Material(PDF)
PDF 74.4 KB