Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T06:42:43.412Z Has data issue: false hasContentIssue false

Hydrological changes in eastern europe during the last 40,000 yr inferred from biomarkers in Black Sea Sediments

Published online by Cambridge University Press:  20 January 2017

Frauke Rostek*
Affiliation:
CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, 13545 Aix-en-Provence, France
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, 13545 Aix-en-Provence, France
*
*Corresponding author. Fax: + 33 4 42 50 74 21. E-mail address:[email protected] (F. Rostek).

Abstract

The Black Sea is connected to a large drainage area including the European Russian Plain, part of the Alps and southeastern Europe. To study the hydrological changes in this basin over the last 40,000 years, we measured specific terrigenous biomarkers for wetland vegetation in well-dated sediments from the northwestern Black Sea, spanning the last glacial period (lacustrine phase) and the Holocene (marine phase). Low abundances of these biomarkers are observed during the North Atlantic ice melting and cooling events known as Heinrich Events 4 to 2, the Last Glacial Maximum and the Younger Dryas Event. Increased biomarker inputs characterize the mild climate phases known as Dansgaard–Oeschger Interstadials, the Bølling/Allerød and Preboreal Warmings indicating increased erosion due to permafrost degradation, higher primary productivity and/or wetland extension in the drainage basin. The final retreat of the Fennoscandian Ice Sheet from the Russian Plain occurs during the early part of Heinrich Event 1 and is characterized by increased biomarker concentrations in a typical series of four deglacial clay layers. For the last glacial period, the correspondence in timing between the biomarker records and the atmospheric CH4 record from ice cores, suggests an important CH4 contribution due to boreal permafrost thawing and wetland emission.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albaigés, J., Algaba, J., Grimalt, J., (1984). Extractable and bound neutral lipids in some lacustrine sediments. Organic Geochemistry 6, 223236.Google Scholar
Andersen, K.K., Azuma, N., Barnola, J.M., (2004). High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Andersson, R., Meyers, P.A., (2012). Effect of climate change on delivery and degradation of lipid biomarkers in a Holocene peat sequence in the Eastern European Russian Arctic. Organic Geochemistry 53, 63v72.Google Scholar
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., Zöller, L., (2009). Rapid and cyclic aelian deposition during the Last Glacial in Eropean loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 25–26 29552975.Google Scholar
Baas, M., Pancost, R., van Geel, B., Sinninghe, Damsté J., (2000). A comparative study of lipids of Sphagnum species. Organic Geochemistry 31, 535541.Google Scholar
Bahr, A., Lamy, F., Arz, H., Kuhlmann, H., Wefer, G., (2005). Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology 214, 309322.Google Scholar
Bahr, A., Arz, H., Lamy, F., Wefer, G., (2006). Late glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells. Earth and Planetary Science Letters 241, 863875.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R.G., Zindler, A., (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, 405410.Google Scholar
Bard, E., Rostek, F., Turon, J.-L., Gendreau, S., (2000). Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 13211324.Google Scholar
Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., Stocker, T.F., (2012). High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences Discussions 9, 54715508.Google Scholar
Bingham, E.M., McClymont, E.L., Väliranta, M., Mauquoy, D., Roberts, Z., Chambers, F.M., Pancost, F.M., Evershed, R.P., (2010). Conservative composition of n-alkane biomarkers in Sphagnum species: implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry 41, 214220.Google Scholar
Blunier, T., Spahni, R., Barnola, J.-M., Chappellaz, J., Loulergue, L., Schwander, J., (2007). Synchronization of ice core records via atmospheric gases. Climate of the Past 3, 325330.Google Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245249.Google Scholar
Broccoli, A.J., Manabe, S., (1987). The influence of continental ice, atmospheric CO 2, and land albedo on the climate of the last glacial maximum. Climate Dynamics 1, 8799.CrossRefGoogle Scholar
Broecker, W., Bond, G., Klas, M., Clark, E., McManus, J., (1992). Origin of the northern Atlantic's Heinrich events. Climate Dynamics 6, 265273.Google Scholar
Carlsen, A.E., Clark, P.U., (2012). Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Reviews of Geophysics 50, RG4007.Google Scholar
Chappellaz, J., Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C., (1990). Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 10.1038/345127a0.Google Scholar
Chappellaz, J., Blunier, T., Raynaud, D., Barnola, J.-M., Schwander, J., Stauffer, B., (1993). Synchronous changes in atmospheric CH 4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 10.1038/366443a0.Google Scholar
Chappellaz, J., Blunier, T., Kints, S., Dällenbach, A., Barnola, J.-M., Schwander, J., Raynaud, D., Stauffer, B., (1997). Changes in the atmospheric CH 4 gradient between Greenland and Antarctica during the Holocene. Journal of Geophysical Research 102, 1598715997.Google Scholar
Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M., Teller, J.T., (2001). Freshwater forcing of abrupt climate change during the last glaciation. Science 293, 283287.Google Scholar
Cranwell, P.A., (1984). Alkyl esters, mid chain ketones and fatty acids in late glacial and postglacial lacustrine sediments. Organic Geochemistry 6, 115124.CrossRefGoogle Scholar
Cranwell, P.A., Eglinton, G., Robinson, N., (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments — II. Organic Geochemistry 11, 6 513527.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
Darnault, R., Rolland, Y., Braucher, R., Bourlès, D., Revel, M., Sanchez, G., (2011). Timing of the last deglaciation revealed by receding glaciers at the Alpine-scale: impact on mountain geomorphology. Quaternary Science Reviews 31, 127142.CrossRefGoogle Scholar
Degens, E.T., Ross, D.A., (1974). The Black Sea — Geology, Chemistry, and Biology. American Association of Petroleum Geologists, Tulsa, Oklahoma.(633 pp.).Google Scholar
Denton, G.H., Broecker, W.S., Alley, R.B., (2006). The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14, 2 1416.Google Scholar
Eglinton, G., Hamilton, R.J., (1963). The distribution of alkanes. Swain, T. Chemical Plant Taxonomy. Academic Press, New York.187218.Google Scholar
Ehlers, J., Gibbard, P.L., (2004). Quaternary Glaciations — Extent and Chronology, Part I: Europe. Elsevier, 461.Google Scholar
Ficken, K.J., Li, B., Swain, D.L., Eglinton, G., (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31, 745749.Google Scholar
Fischer, H., Behrens, M., Bock, M., Richter, U., Schmitt, J., Loulergue, L., Chappellaz, J., Spahni, R., Blunier, T., Leuenberger, M., Stocker, T.F., (2008). Changing boreal methane sources and constant biomass burning during the last termination. Nature 452, 864867.Google Scholar
Florineth, D., Schlüchter, C., (2000). Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quaternary Research 54, 295308.Google Scholar
Flückiger, J., Monnin, E., Stauffer, B., Schwander, J., Stocker, T.F., Chappellaz, J., Raynaud, D., Barnola, J.-M., (2002). High-resolution Holocene N 2 O ice core record and its relationship with CH 4 and CO 2 . Global Biogeochemical Cycles 16, 1 1010 10.1029/2001GB001417.Google Scholar
Gajewski, K., Viau, A., Sawada, M., Atkinson, D., Wilson, S., (2001). Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Global Biochemical Cycles 15, 2 298310.Google Scholar
Gorham, E., (1991). Northern peatlands — role in the carbon-cycle and probable responses to climatic warming. Ecological Applications 1, 182195.Google Scholar
Göttlich, K., (1990). Moor- und Torfkunde. E. Schweizerbart'sche Verlagsbuchhandling, Stuttgart.529.Google Scholar
Gruber, A., Reitner, J.M., (2007). Dating of mass movements by rock glaciers: examples from the eastern Alps. Geophysical Research Abstracts 9, European Geoscience Union, 03945(SRef-ID: 1607-7962/gra/EGU2007-A-03945).Google Scholar
Halsey, L.A., Vitt, D.H., (2000). Sphagnum-dominated peatlands on North America since the Last Glacial Maximum: their occurrence and extent. The Bryologist 103, 2 334352.Google Scholar
Heinrich, H., (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 2 142152.Google Scholar
Hemming, S., (2004). Heinrich Events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, RG1005 10.1029/2003RG000128.CrossRefGoogle Scholar
Hernandez, M.E., Mead, R., Peralba, M.C., Jaffé, R., (2001). Origin and transport of n-alkan-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matter. Organic Geochemistry 32, 2132.Google Scholar
Howard, A.J., Macklin, M.G., Bailey, D.W., Mills, S., Andreescu, R., (2004). Late-glacial and Holocene river development in the Teleorman Valley on the southern Romanian Plain. Journal of Quaternary Science 19, 3 271280.Google Scholar
Huang, Y., Shuman, B., Wang, Y., Webb, T., (2004). Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology 31, 363375.CrossRefGoogle Scholar
Huang, X., Xue, J., Zhang, J., Qin, Y., Meyers, P., Wang, H., (2012). Effect of different wetness conditions on Sphagnum lipid composition in the Erxianyan petland, central China. Organic Geochemistry 44, 17.Google Scholar
Huntley, B., Allen, J.R.M., Collingham, Y.C., Hickler, T., Lister, A.M., Singarayer, J., Stuart, A.J., Sykes, M.T., Valdes, P.J., (2013). Millennial climatic fluctuations are key to the structure of last glacial ecosystems. PLoS One 8, 4 e61963.Google Scholar
Ivy-Ochs, S., Kerschner, H., Kubik, P.W., Schlüchter, C., (2006). Glacier response in the European Alps to Heinrich Events 1 cooling: the Gschnitz stadial. Journal of Quaternary Sciences 21, 2 115130.Google Scholar
Jansen, B., Nierop, K.G.J., (2009). Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns. Organic Geochemistry 40, 6169.Google Scholar
Jaoshvili, S., (2002). The rivers of the Black Sea. Khomerki, I., Gigineishvili, G., Kordzadze, A. Technical Report No 71, European Environment Agency. European Environment Agency, Kopenhagen, Denmark.Google Scholar
Kvasov, D.D., (1979). The Late-Quaternary history of large lakes and inland seas of eastern Europe. Annales Academiae Scientiarum Fennicae AIII 127, 171.Google Scholar
Lehtonen, K., Ketola, M., (1990). Occurrence of long-chain acyclic methyl ketones in Sphagnum and Carex peats of various degrees of humification. Organic Geochemistry 15, 3 275280.CrossRefGoogle Scholar
Lehtonen, K., Ketola, M., (1993). Solvent-extractable lipids of Sphagnum, Carex, Bryales and Carex-Bryales peats: content and compositional features vs peat humification. Organic Geochemistry 20, 3 363380.Google Scholar
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T., Chappellaz, J., (2008). Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years. Nature 453, 383386.Google Scholar
Major, C., Goldstein, S.L., Ryan, W., Lericolais, G., Piotrowski, A.M., Hajdas, I., (2006). The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews 25, 20312047.Google Scholar
Mangerud, J., (2004). Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews 23, 13131332.CrossRefGoogle Scholar
Markova, A.K., Simakova, A.N., Puzachenko, A.Y., (2009). Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24–18 kyr BP) inferred from data on plant communities and mammal assemblages. Quaternary International 201, 5359.Google Scholar
Ménot, G., Bard, E., (2012). A precise search for drastic temperature shifts of the past 40,000 years in southeastern Europe. Paleoceanography 27, PA2210 10.1029/2012PA002291.Google Scholar
Ménot, G., Bard, E., Rostek, F., Weijers, J.W.H., Hopmans, E.C., Schouten, S., Sinninghe Damsté, J.S., (2006). Early reactivation of European rivers during the last deglaciation. Science 313, 16231625.Google Scholar
Meyers, P.A., Ishiwatari, R., (1993). Lacustrine organic geochemistry — an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 7 867900.Google Scholar
Mudie, P.J., Marret, F., Aksu, A.E., Hiscott, R.N., Gillespie, H., (2007). Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: centennial- to decadal-scale records from the Black and Marmara Seas. Quaternary International 167–168, 7390.Google Scholar
Nichols, J.E., Huang, Y., (2007). C23–C31 n-alkan-2-ones are biomarkers for the genus Sphagnum in freshwater peatlands. Organic Geochemistry 37, 19721976.Google Scholar
Nichols, J.E., Booth, R.K., Jackson, S.T., Pendall, E.G., Huang, Y., (2006). Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Organic Geochemistry 37, 15051513.CrossRefGoogle Scholar
Nott, C.J., Xie, S., Avsejs, L.A., Maddy, D., Chambers, F.M., Evershed, R.P., (2000). n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry 31, 231235.Google Scholar
Ortiz, J.E., Gallego, J.L.R., Torres, T., Diaz-Bautista, A., Sierra, C., (2010). Paleoenvironmental reconstruction of Northern Spain during the last 8000 cal yr BP based on the biomarker content of the Ronanzas ombrotrophic bog (Asturias, northern Spain). Organic Geochemistry 41, 454466.CrossRefGoogle Scholar
Ortiz, J.E., Diaz-Bautista, A., Aldasoro, J.J., Torres, T., Gallego, J.L.R., Moreno, L., Estébanez, B., (2011). n-Alkane-2-ones in peat-forming plants from the Ronanzas ombrotrophic bog (Asturias, northern Spain). Organic Geochemistry 42, 586592.Google Scholar
Pailler, D., Bard, E., (2002). Geochemistry and sea-surface temperature reconstruction for sediment cores of the Iberian Margin. Palaeogeography Palaeoclimatology Palaeoecology 181, 4 431452.Google Scholar
Pancost, R.D., Baas, M., Van Geel, B., Sinninghe Damsté, J.S., (2002). Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry 33, 675690.Google Scholar
Panin, N., Jipa, D., (2002). Danube river sediment input and its interaction with the northwestern Black Sea. Estuarine, Coastal and Shelf Science 54, 551562.Google Scholar
Peltier, W.R., Fairbanks, R.G., (2006). Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.Google Scholar
Prahl, F.G., de Lange, G.J., Scholten, S., Cowie, G.L., (1997). A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain. Organic Geochemistry 27, 141152.Google Scholar
Renssen, H., Valderberghe, J., (2003). Investigation of the relationship between permafrost distribution in NW Europa and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the last glaciation. Quaternary Science Reviews 22, 209223.Google Scholar
Ridgwell, A., Maslin, M., Kaplan, J.O., (2012). Flooding the continental shelves as a contributor to deglacial CH 4 rise. Journal of Quaternary Science 10.1002/jps.2568.Google Scholar
Rieley, G., Collier, R.J., Jones, D.M., Eglinton, G., (1991). The biogeochemistry of Ellesmere Lake, U.K.—I: source correlation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry 17, 6 901912.Google Scholar
Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Bitinas, A., Brook, E.J., Marks, L., Zelcs, V., Lunkka, J.-P., Palvlovskaya, I.E., Piotrowski, J.A., Raukas, A., (2006). The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311, 14491452.Google Scholar
Ross, D.A., Degens, E.T., (1974). Recent sediments of the Black Sea. Degens, E.T., Ross, D.A. The Black Sea–Geology, Chemistry, and Biology. AAPG, Tulsa, OK.183199.Google Scholar
Rousseau, D.-D., Gerasimenko, N., Matviischina, Z., Kukla, G., (2001). Late Pleistocene environments of the Central Ukraine. Quaternary Research 56, 349356.Google Scholar
Sailer, R., Kerschner, H., (2000). Equilibrium line altitudes and rock glaciers in the Ferwall Group (Western Tyrol, Austria) during the Younger Dryas cooling event. Annals of Glaciology 28, 141145.Google Scholar
Sidorchuk, A., Borisova, O., Panin, A., (2001). Fluvial response to the Late Valdai/Holocene environmental change on the East European Plain. Global and Planetary Change 28, 303318.Google Scholar
Simakova, A.N., (2006). The vegetation of the Russian Plain during the second part of the Late Pleistocene (33–18 ka). Quaternary International 149, 110114.Google Scholar
Soulet, G., Ménot, G., Garreta, V., Rostek, F., Zaragosi, S., Lercicolais, G., Bard, E., (2011a). Black Sea “Lake” reservoir age evolution since the Last Glacial — hydrologic and climatic implications. Earth and Planetary Science Letters 308, 245258.Google Scholar
Soulet, G., Ménot, G., Lericolais, G., Bard, E., (2011b). A revised calendar age for the last reconnection of the Black Sea to the global ocean. Quaternary Science Reviews 30, 10191026.Google Scholar
Soulet, G., Ménot, G., Bayon, G., Rostek, F., Ponzevera, E., Toucanne, S., Lericolais, G., Bard, E., (2013). Abrupt drainage cycles of the Fennoscandian Ice Sheet. Proceedings of the National Academy of Science 110, 17 66826687.CrossRefGoogle ScholarPubMed
Struk, D.H., (1993). Encyclopedia of Ukraine. University of Toronto Press, Toronto.(864 pp.).Google Scholar
Svendsen, J.I., (2004). Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.Google Scholar
Tzedakis, P.C., Lawson, I.T., Frogley, M.R., Hewitt, G.M., Preece, R.C., (2002). Buffered tree population changes in a Quaternary Refugium: evolutionary implications. Science 297, 2044.Google Scholar
Vanderberghe, J., Nugteren, G., (2001). Rapid climate changes recorded in loess successions. Global and Planetary Change 28, 19.Google Scholar
Velichko, A.A., Catto, N., Drenova, A.N., Klimanov, V.A., Kremenetski, K.V., Nechaev, V.P., (2002). Climate changes in East Europe and Siberia at the Late glacial-holocene transition. Quaternary International 91, 1 7599.Google Scholar
Volkman, J.K., Farrington, J.W., Gagosian, R.B., Wakeham, S.G., (1983). Lipid composition of coastal marine sediments from the Peru upwelling region. Bjorøy, M. Advances in Organic Geochemistry. Wiley, Chichester.228240.Google Scholar
Vonk, J.E., Gustafson, Ö., (2009). Calibrating n-alkane Sphagnum proxies in sub-Arctic Scandinavia. Organic Geochemistry 40, 10851090.Google Scholar
Vonk, J.E., Sanchez-Garcìa, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., Gustafsson, Ö., (2010). Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences 7, 31533166.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., Dorale, J.A., (2001). A high-resolution absolute-dated Late Pleistocene Monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wenchuan, Q., Dickman, M., Sumin, W., Ruijin, W., Pingzhong, Z., Jianfa, C., (1999). Evidence for an aquatic plant origin of ketones found in Taihu Lake sediments. Hydrobiologia 397, 149154.Google Scholar
Williams, C., Flower, B.P., Hastings, D.W., (2012). Seasonal Laurentide Ice Sheet melting during the ‘Mystery Interval’ (17.5–14.4 ka). Geology 40, 10 955958.Google Scholar
Wohlfahrth, B., Lacourse, T., Bennike, O., Subetto, D., Tarasov, P., Demidov, I., Filimonova, L., Sapelko, T., (2007). Climatic and environmental changes in north-western Russia between 15,000 and 8000 cal yr BP: a review. Quaternary Science Reviews 26, 18711883.Google Scholar
Xie, S., Wang, Z.H., Wang, H., Gu, Y., Huang, Y., (2003). Lipid distribution in loess-paleosol sequences from northwest China. Organic Geochemistry 34, 10711079.Google Scholar
Xie, S., Nott, C.J., Avsejs, L.A., Maddy, D., Chambers, F.M., Evershed, R.P., (2004). Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochimica et Cosmochimica Acta 68, 13 28492862.Google Scholar
Yu, Z., Loisel, J., Brosseau, D.P., David, W., Beilman, D.W., Hunt, S.J., (2010). Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37, L13402 10.1029/2010GL043584.Google Scholar
Zheng, Y., Zhou, W., Meyers, P., (2010). Proxy value of n-alkan-2-ones in the Hongyuan peat sequence to reconstruct Holocene climate changes on the eastern margin of the Tibetan Plateau. Chemical Geology 288, 97104.Google Scholar
Zheng, Y., Zhou, W., Liu, X., Zhang, C.L., (2011). n-Alkan-2-one distributions in a northeastern China peat core spanning the last 16 kyr. Organic Geochemistry 42, 2530.Google Scholar