Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:49:39.411Z Has data issue: false hasContentIssue false

Holocene sea-surface temperature variability in the Chilean fjord region

Published online by Cambridge University Press:  20 January 2017

Magaly Caniupán*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
Frank Lamy
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
Carina B. Lange
Affiliation:
Department of Oceanography, Center for Oceanographic Research in the eastern South Pacific (COPAS), COPAS Sur-Austral Program, University of Concepción, Concepción, Chile
Jérôme Kaiser
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Seestraβe 15, 18199 Rostock, Warnemünde, Germany
Rolf Kilian
Affiliation:
Department of Geology, FBVI, University of Trier, Behringstraße, D-54296 Trier, Germany
Helge W. Arz
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Seestraβe 15, 18199 Rostock, Warnemünde, Germany
Tania León
Affiliation:
Department of Oceanography, Center for Oceanographic Research in the eastern South Pacific (COPAS), COPAS Sur-Austral Program, University of Concepción, Concepción, Chile
Gesine Mollenhauer
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
Susana Sandoval
Affiliation:
Department of Oceanography, Center for Oceanographic Research in the eastern South Pacific (COPAS), COPAS Sur-Austral Program, University of Concepción, Concepción, Chile
Ricardo De Pol-Holz
Affiliation:
Department of Oceanography, Center for Climate and Resilience Research (CR)2, University of Concepción, Concepción, Chile
Silvio Pantoja
Affiliation:
Department of Oceanography, Center for Oceanographic Research in the eastern South Pacific (COPAS), COPAS Sur-Austral Program, University of Concepción, Concepción, Chile
Julia Wellner
Affiliation:
Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA
Ralf Tiedemann
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
*
*Corresponding author at: Department of Oceanography and COPAS Sur-Austral Program, University of Concepción, Concepción, Chile. E-mail address:[email protected] (M. Caniupán).

Abstract

Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzúa, A., Villagrán, C., and Moreno, P.I. Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43°S). Quaternary Research 62, (2004). 4959.Google Scholar
Alves-de-Souza, C., González, M.T., and Iriarte, J.L. Functional groups in marine phytoplankton assemblages dominated by diatoms in fjords of southern Chile. Journal of Plankton Research 30, (2008). 12331243.CrossRefGoogle Scholar
Antezana, T. Hydrographic features of Magellan and Fuegian inland passages and adjacent Subantarctic waters. Scientia Marina 63, (1999). 2334.CrossRefGoogle Scholar
Araneda, A., Torrejon, F., Aguayo, M., Torres, L., Cruces, F., Cisternas, M., and Urrutia, R. Historical records of San Rafael glacier advances (North Patagonian Icefield): another clue to ‘Little Ice Age’ timing in southern Chile?. The Holocene 17, (2007). 987998.Google Scholar
Bentley, M.J., Hodgson, D.A., Smith, J.A., Cofaigh, C.Ó., Domack, E.W., Larter, R.D., Roberts, S.J., Brachfeld, S., Leventer, A., Hjort, C., Hillenbrand, C.-D., and Evans, J. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. The Holocene 19, (2009). 5169.CrossRefGoogle Scholar
Bianchi, C., and Gersonde, R. Climate evolution at the last deglaciation: the role of the Southern Ocean. Earth and Planetary Science Letters 228, (2004). 407424.CrossRefGoogle Scholar
Breuer, S., Kilian, R., Schörner, D., Weinrebe, W., Behrmann, J., and Baeza, O. Glacial and tectonic control on fjord morphology and sediment deposition in the Magellan region (53°S), Chile. Marine Geology 346, (2013). 3146.Google Scholar
Caniupán, M., Lamy, F., Lange, C.B., Kaiser, J., Arz, H., Kilian, R., Baeza, O., Aracena, C., Hebbeln, D., Kissel, C., Laj, C., Mollenhauer, G., and Tiedemann, R. Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53°S) over the past ~ 60 kyr. Paleoceanography 26, (2011). PA3221 http://dx.doi.org/10.1029/2010PA002049CrossRefGoogle Scholar
Chaigneau, A., and Pizarro, O. Surface circulation and fronts of the South Pacific Ocean, east of 120 degrees W. Geophysical Research Letters 32, (2005). L08605 http://dx.doi.org/10.1029/2004GL022070Google Scholar
Conte, M.H., Sicre, M.A., Ruhlemann, C., Weber, J.C., Schulte, S., Schulz-Bull, D., and Blanz, T. Global temperature calibration of the alkenone unsaturation index (UK′37) in surface waters and comparison with surface sediments. Geochemistry, Geophysics, Geosystems 7, (2006). Q02005 http://dx.doi.org/10.1029/2005GC001054CrossRefGoogle Scholar
Divine, D.V., Koc, N., Isaksson, E., Nielsen, S., Crosta, X., and Godtliebsen, F. Holocene Antarctic climate variability from ice and marine sediment cores: insights on ocean–atmosphere interaction. Quaternary Science Reviews 29, (2010). 303312.Google Scholar
Garreaud, R., Lopez, P., Minvielle, M., and Rojas, M. Large-scale control on the Patagonian Climate. Journal of Climate 26, (2013). 215230.CrossRefGoogle Scholar
Glasser, N.F., Harrison, S., Winchester, V., and Aniya, M. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, (2004). 79101.Google Scholar
González, H.E., Calderón, M.J., Castro, L., Clement, A., Cuevas, L.A., Daneri, G., Iriarte, J.L., Lizárraga, L., Martínez, R., Menschel, E., Silva, N., Carrasco, C., Valenzuela, C., Vargas, C.A., and Molinet, C. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Marine Ecology Progress Series 402, (2010). 1330.CrossRefGoogle Scholar
González, H.E., Castro, L.R., Daneri, G., Iriarte, J.L., Silva, N., Tapia, F., Teca, E., and Vargas, C.A. Land–ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47–50°S). Progress in Oceanography 119, (2013). 3247.Google Scholar
Grove, J.M. The initiation of the “Little Ice Age” in the region around the North Atlantic. Climatic Change 48, (2001). 5382.Google Scholar
Harada, N., Ninnemann, U., Lange, C.B., Marchant, M.E., Sato, M., Ahagon, N., and Pantoja, S. Deglacial–Holocene environmental changes at the Pacific entrance of the Strait of Magellan. Palaeogeography Palaeoclimatology Palaeoecology 375, (2013). 125135.Google Scholar
Harrison, S., Winchester, V., and Glasser, N. The timing and nature of recession of outlet glaciers of Hielo Patagónico Norte, Chile, from their Neoglacial IV (Little Ice Age) maximum positions. Global and Planetary Change 59, (2007). 6778.CrossRefGoogle Scholar
Ho, S.L., Mollenhauer, G., Fietz, S., Martínez-Garcia, A., Lamy, F., Rueda, G., Schipper, K., Méheust, M., Rosell-Melé, A., Stein, R., and Tiedemann, R. Appraisal of TEX86 and TEXL 86 thermometries in subpolar and polar regions. Geochimica et Cosmochimica Acta 131, (2014). 213226.Google Scholar
Hodell, D.A., Kanfoush, S.L., Shemesh, A., Crosta, X., Charles, C.D., and Guilderson, T.P. Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr BP. Quaternary Research 56, (2001). 191198.CrossRefGoogle Scholar
Holligan, P.M., Charalampopoulou, A., and Hutson, R. Seasonal distributions of the coccolithophore, Emiliania huxleyi, and of particulate inorganic carbon in surface waters of the Scotia Sea. Journal of Marine Systems 82, (2010). 195205.CrossRefGoogle Scholar
Iizuka, Y., Hondoh, T., and Fujii, Y. Antarctic sea ice extent during the Holocene reconstructed from inland ice core evidence. Journal of Geophysical Research 113, (2008). D15114 http://dx.doi.org/10.1029/2007JD009326CrossRefGoogle Scholar
Ingram, B.L., and Southon, J.R. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38, (1996). 573582.CrossRefGoogle Scholar
Iriarte, J.L., Uribe, J.C., and Valladares, C. Biomass of size-fractionated phytoplankton during the Spring–Summer season in Southern Chile. Botanica Marina 36, (1993). 443450.Google Scholar
Iriarte, J.L., González, H.E., Liu, K.K., Rivas, C., and Valenzuela, C. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S). Estuarine, Coastal and Shelf Science 74, (2007). 471480.Google Scholar
Jenny, B., Valero-Garcés, B.L., Villa-Martínez, R., Urrutia, R., Geyh, M., and Veit, H. Early to Mid-Holocene aridity in Central Chile and the Southern Westerlies: the Laguna Aculeo Record (34°S). Quaternary Research 58, (2002). 160170.Google Scholar
Kaiser, J., Lamy, F., and Hebbeln, D. A 70-kyr sea surface temperature record off southern Chile (ODP Site 1233). Paleoceanography 20, (2005). PA4009 http://dx.doi.org/10.1029/2005PA001146CrossRefGoogle Scholar
Kaiser, J., Schefuss, E., Lamy, F., Mohtadi, M., and Hebbeln, D. Glacial to Holocene changes in sea surface temperature and coastal vegetation in north central Chile: high versus low latitude forcing. Quaternary Science Reviews 27, (2008). 20642075.Google Scholar
Kilian, R., and Lamy, F. A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quaternary Science Reviews 53, (2012). 123.Google Scholar
Kilian, R., Baeza, O., Steinke, T., Arevalo, M., Rios, C., and Schneider, C. Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magellanes fjord system of Chile (53°S). Quaternary International 161, (2007). 90107.Google Scholar
Kilian, R., Lamy, F., and Arz, H. Late Quaternary variations of the southern westerly wind belt and its influences on aquatic ecosystems and glacier extend within the southernmost Andes [Spätquartäre Variationen der südhemisphärischen Westwindzone und deren Einfluss auf aquatische Ökosysteme sowie Gletscherausdehnung in den südlichen Anden]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 164, (2013). 279294.Google Scholar
Koch, J., and Kilian, R. ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile. The Holocene 15, (2005). 2028.Google Scholar
Lamy, F., Hebbeln, D., and Wefer, G. High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, (1999). 8393.CrossRefGoogle Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G. High- and low-latitude climate control on the position of the southern Peru–Chile Current during the Holocene. Paleoceanography 17, 2 (2002). http://dx.doi.org/10.1029/2001PA000727Google Scholar
Lamy, F., Kilian, R., Arz, H.W., Francois, J.P., Kaiser, J., Prange, M., and Steinke, T. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, (2010). 695699.Google Scholar
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M., and Johnson, D.R. World Ocean Atlas 2009, Volume 1: temperature. Levitus, S. NOAA Atlas NESDIS 68. (2010). U.S. Government Printing Office, Washington, D.C.. (184 pp.)Google Scholar
Magazzù, G., Panella, S., and Decembrini, F. Seasonal variability of fractionated phytoplankton, biomass and primary production in the Straits of Magellan. Journal of Marine Systems 9, (1996). 249267.CrossRefGoogle Scholar
Maldonado, A., and Villagrán, C. Paleoenvironmental changes in the semiarid coast of Chile (~ 32°S) during the last 6200 cal years inferred from a swamp-forest pollen record. Quaternary Research 58, (2002). 130138.Google Scholar
Marcott, S.A., Shakun, J.D., Clark, P.U., and Mix, A.C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, (2013). 11981201.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.R., Steig, E.J., Stievenard, M., and Vaikmae, R. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research 54, (2000). 348358.Google Scholar
Masson-Delmotte, V., Stenni, B., and Jouyel, J. Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core. The Holocene 14, (2004). 145151.Google Scholar
Masson-Delmotte, V. et al. A comparison of the present and last interglacial periods in six Antarctic ice cores. Climate of the Past 7, (2011). 397423.Google Scholar
Mayewski, P.A. et al. Holocene climate variability. Quaternary Research 62, (2004). 243255.Google Scholar
McCulloch, R., and Davies, S. Late-glacial and Holocene palaeoenvironmental change in the central Strait of Magellan, southern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology 173, (2001). 143173.Google Scholar
Milliken, K.T., Anderson, J.B., Wellner, J.S., Bohaty, S.M., and Manley, P.L. High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geological Society of American Bulletin 26478, (2009). 115. http://dx.doi.org/10.1130/B26478.1Google Scholar
Moore, T.S., Dowell, M.D., and Franz, B.A. Detection of coccolithophore blooms in ocean color satellite imagery: a generalized approach for use with multiple sensors. Remote Sensing Environment 117, (2012). 249263.Google Scholar
Müller, P.J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Mele, A. Calibration of the alkenone paleotemperature index UK′ 37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, (1998). 17571772.Google Scholar
Nielsen, S., Koc, N., and Crosta, X. Holocene climate in the Atlantic sector of the Southern Ocean: controlled by insolation or oceanic circulation?. Geology 32, (2004). 317320.Google Scholar
Poulton, A., Painter, S., Young, J., Bates, N., Bowler, B., Drapeau, D., Lyczschowski, E., and Balch, W. The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: ecology, biogeochemistry, and cellular calcification. Global Biogeochemical Cycles 27, (2013). 110. http://dx.doi.org/10.1002/2013GB004641Google Scholar
Prahl, F.G., and Wakeham, S.G. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330, (1987). 367369.Google Scholar
Prahl, F.G., Muehhausen, L.A., and Zahnle, D.L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, (1988). 23032310.CrossRefGoogle Scholar
Prahl, F.G., Rontani, J.-F., Zabeti, N., Walinsky, S.E., and Sparrow, M.A. Systematic pattern in UK′ 37 — temperature residuals for surface sediments from high latitude and other oceanographic settings. Geochimica et Cosmochimica Acta 74, (2010). 131143.Google Scholar
Reimer, P.J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, (2013). 18691887.Google Scholar
Rosell-Melé, A., Jansen, E., and Weinelt, M. Appraisal of a molecular approach to infer variations in surface ocean freshwater inputs into the North Atlantic during the last glacial. Global and Planetary Change 34, (2002). 143152.CrossRefGoogle Scholar
Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N., and Casassa, G. Weather observations across the Southern Andes at 53°S. Physical Geography 24, (2003). 97119.Google Scholar
Sepúlveda, J., Pantoja, S., Hughen, K.A., Bertrand, S., Figueroa, D., León, T., Drenzek, J., and Lange, C. Late Holocene sea-surface temperature and precipitation variability in northern Patagonia, Chile (Jacaf Fjord, 44°S). Quaternary Research 72, (2009). 400409.Google Scholar
Shevenell, A.E., Ingalls, A.E., Domack, E.W., and Kelly, C. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470, (2011). 250254.CrossRefGoogle ScholarPubMed
Siani, G., Michel, E., De Pol-Holz, R., DeVries, T., Lamy, F., Carel, M., Isguder, G., Dewilde, F., and Lourantou, A. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nature Communications 4, (2013). http://dx.doi.org/10.1038/ncomms3758CrossRefGoogle ScholarPubMed
Sievers, H.A., and Silva, N. Water masses and circulation in austral Chilean channels and fjords. Silva, N., and Palma, S. Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn. (2008). Comité Oceanográfico Nacional — Pontificia Universidad Católica de Valparaíso, Valparaíso. 5358.Google Scholar
Signorini, S.R., Garcia, V.M.T., Piola, A.R., Garcia, C.A.E., Mata, M.M., and McClain, C.R. Seasonal and interannual variability of calcite in the vicinity of the Patagonian shelf break (38°S–52°S). Geophysical Research Letters 33, (2006). L16610 http://dx.doi.org/10.1029/2006GL026592Google Scholar
Sikes, E.L., Volkman, J.K., Robertson, L.G., and Pichon, J.-J. Alkenones and alkenes in surface waters and sediments of the Southern Ocean: implications for paleotemperature estimation in polar regions. Geochimica et Cosmochimica Acta 61, (1997). 14951505.Google Scholar
Silva, N., and Calvete, C. Características oceanográficas físicas y químicas de canales australes chilenos entre el golfo de Penas y el estrecho de Magallanes (Crucero CIMAR Fiordo 2). Ciencia y Tecnología Marina 22, (2002). 2388.Google Scholar
Silva, N., Calvete, C., and Sievers, H.A. Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y laguna San Rafael (Crucero CIMAR-Fiordo 1). Ciencia y Tecnología Marina 20, (1997). 23106.Google Scholar
Silva, N., Calvete, C., and Sievers, H.A. Masas de agua y circulación general para algunos canales australes chilenos entre Puerto Montt y laguna San Rafael (Crucero CIMAR-Fiordo 1). Ciencia y Tecnología del Mar 21, (1998). 1748.Google Scholar
Stern, C.R. Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bulletin of Volcanology 70, (2008). 435454.Google Scholar
Strub, P.T., Mesias, J.M., Montecino, V., Ruttlant, J., and Salinas, S. Coastal ocean circulation off Western South America. Robinson, A.R., and Brink, K.H. The global coastal ocean: regional studies and syntheses. (1998). Wiley, New York. 273315.Google Scholar
Villagrán, C. Glacial climates and their effects on the history of the vegetation of Chile: a synthesis based on palynological evidence from Isla de Chiloé. Review of Palaeobotany and Palynology 65, (1990). 1724.Google Scholar
Villa-Martínez, R., Villagrán, C., and Jenny, B. The last 7500 cal yr BP of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quaternary Research 60, (2003). 284293.CrossRefGoogle Scholar
WAIS Divide Project Members Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, (2013). 440444.Google Scholar
Wanner, H. et al. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, (2008). 17911828.CrossRefGoogle Scholar