Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T03:50:22.005Z Has data issue: false hasContentIssue false

Holocene Relict Woodlands at the Eastern Canadian Treeline

Published online by Cambridge University Press:  20 January 2017

Abstract

We present direct evidence for the relict nature of lichenspruce woodlands thriving at treeline, using 14C-dated stands growing in the humid climate of eastern Hudson Bay in northern Québec. Black spruce, Picea mariana (Mill.) BSP, forms two groups of relict stands: a Neoglacial group of postfire origin dating between 2000 and 900 yr B.P. and a pre-Neoglacial group most likely established between 4500 and 3200 yr B.P. The latter group shows no evidence of fire (absence of charcoal under topsoil organic horizon). The stands are exceptional because they probably are the direct lineages of the primeval forests that colonized the land sometime after deglaciation. The structure of the relict lichen-spruce communities gives strong support to the current thesis that considers lichen-spruce woodland as a self-perpetuating open forest, typical of the subarctic environment.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. S., and Price, L. W. (1980). Radiocarbon dating of the rate of movement of two solifluction lobes in the Ruby Range, Yukon Territory. Quaternary Research 13, 365380.CrossRefGoogle Scholar
Allard, M., and Seguin, M. K. (1985). La déglaciation d’une partie du versant hudsonien québécois: Bassin des rivières Nastapoca, Sheldrake et à l’Eau Claire. Géographic physique et Quaternaire 39, 1324.Google Scholar
Arseneault, D. (1990). “Analyse dendroécologique d’un site coniférien soumis à la déforestation subarctique.” Unpublished M.Sc. Thesis, Université Laval, Québec. Google Scholar
Bégin, C. (1991). “Analyse architecturale et dendroécologique d’une pessière à lichens à la limite des forêts.” Unpublished Ph.D. dissertation, Université Laval, Québec.Google Scholar
Desponts, M. (1990). “Dynamiqué récente et holocène du pin gris à sa limite septentrionale au Nouveau-Québec.” Unpublished Ph.D. dis-sertation, Universit6 Laval, Quebec.Google Scholar
Filion, L. (1984). A relationship between dunes, fires and climate recorded in the Holocene deposits of Québec. Nature 309, 543546.Google Scholar
Gerardin, V. (1980). “L’inventaíre du capital-nature du Terrítoíre de la Baie-James.” Environment-Canada, Ottawa.Google Scholar
Heinselman, M. L. (1981). Fire and succession in the conifer forests of northern North America. In “Forest Succession: Concepts and Application” (D. C. West, H. H. Shugart, H. H. and Botkin, D. B., Eds.), pp. 375405. Springer-Verlag, New York.Google Scholar
Kershaw, K. A. (1977). Studies on lichen-dominated systems. XX. An examination of some aspects of the northern boreal lichen woodlands in Canada. Canadian Journal of Botany 55, 393410.Google Scholar
Kershaw, K. A. (1978). The role of lichens in the boreal tundra transition areas. Bryologist 81, 294306.Google Scholar
Lamb, H. F. (1985). Palynological evidence for postglacial change in the position of tree limit in Labrador. Ecological Monographs 55, 241258.CrossRefGoogle Scholar
Larsen, J. A. (1980), “The Boreal Ecosystem.” Academic Press, New York.Google Scholar
Lauriol, B. (1982). “G6omorphologie quaternaire du sud de l’Ungava. Collection Paléo-Québec.” Les Presses de l’Université du Québec, Montr6al.Google Scholar
Maikawa, E., and Kershaw, K. A. (1976). Studies on lichen-dominated systems. XIX. The postfire recovery sequence of black spruce-lichen woodland in the Abitau Lake region, N.W.T. Canadian Journal of Botany 54, 26792687.Google Scholar
Martel, Y. A., and Paul, E. A. (1974). The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proceedings 38, 501506.Google Scholar
Morneau, C., and Payette, S. (1989). Postfire lichen-spruce woodland recovery at the limit of the boreal forest in northern Quebec. Canadian Journal of Botany 67, 2770.Google Scholar
Nichols, H. (1975). “Palynological and Paleoclimatic Study of the Quaternary Displacement of the Boreal Forest-Tundra Ecotone in Kee-watin and Mackenzie, Northwest Territories, Canada,” Occasional Paper 15. Institute of Arctic and Alpine Research, University of Col-orado, Boulder.Google Scholar
Payette, S. Filion, L. Delwaide, A., and Begin, C. (1989a). Reconstruction of tree-line vegetation response to long-term climate change. Nature 341, 429432.Google Scholar
Payette, S., and Gagnon, R. (1985). Late Holocene deforestation and tree regeneration in the forest-tundra of Québec, Nature 313, 570572.Google Scholar
Payette, S. Morneau, C Sirois, L., and Desponts, M. (1989b). Recent fire history of the northern Qu6bec biomes. Ecology 70, 656673.Google Scholar
Richard, P. J. H. (1981). “Paléogéographie postglaciaire en Ungava par l’analyse pollinique. Collection Paléo-Québec.” Les Presses de l’Université du Québec, Montréal.Google Scholar
Ritchie, J, C. (1987). “Postglacial Vegetation of Canada.” Cambridge Univ. Press, Cambridge.Google Scholar
Saint-Laurent, D. (1990). “Les formations éoliennes de l’interface sub-arctique-arctique de la côte orientale de la Baie d’Hudson (Québec nordique).” Unpublished Ph.D. dissertation, Université Laval, Québec.Google Scholar
Sorenson, C. J. Knox, J. C Larsen, J. A., and Bryson, R. A. (1971). Paleosols and the forest border in Keewatin, N.W.T. Quaternary Research 1, 468473.Google Scholar
Wilson, C. V. (1971). “Le climat du Québec. Atlas climatique, première partie.” Service météorologique du Canada, Ottawa.Google Scholar
Worsley, P., and Harris, C, (1974). Evidence for neoglacial solifluction at Okstindan, North Norway. Arctic 27, 128144.CrossRefGoogle Scholar