Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T00:47:57.507Z Has data issue: false hasContentIssue false

Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia)

Published online by Cambridge University Press:  20 January 2017

Tomáš Pánek*
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
Veronika Smolková
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
Jan Hradecký
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
Ivo Baroň*
Affiliation:
Czech Geological Survey, Brno branch, Leitnerova 22, 658 69 Brno, Czech Republic
Karel Šilhán
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
*
*Corresponding author. Fax: + 420 597 092 323. Recent address: Geological Survey of Austria,Neulinggasse 38, 1030 Vienna, Austria. E-mail address:[email protected] (T. Pànek).
1Recent address: Geological Survey of Austria, Neulinggasse 38, 1030 Vienna, Austria.

Abstract

Complex flow-like landslides (CFLLs) are important geomorphic agents of Late Quaternary mountain evolution in the Flysch Belt of the Outer Western Carpathians. The CFLLs are characterised by the upper section of deep-seated, retrogressive landslide of structurally unfavourably oriented rocks and lower sections composed of earthflows originated due to liquefaction of material accumulated from the upper slopes. Radiocarbon dating of organic matter incorporated into landslide debris or related deposits suggests that most of the CFLLs collapsed repeatedly throughout the Holocene with typical recurrence intervals of approximately 1–2 ka. Catastrophic landslides that occurred during extreme hydrometeorological events in recent decades displayed evidence of Holocene activity. Most of the CFLLs dammed and steepened adjacent valleys. Our chronological dataset is biased by erosion of older landforms, but most of the dated reactivations correlate to regional increases in humidity identified by previous paleoenvironmetal studies.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrowicz, S.W., Alexandrowicz, Z., (1999). Recurrent Holocene landslides: a case study of the Krynica landslide in the Polish Carpathians. The Holocene 9, 9199.Google Scholar
Baroň, I., (2007). Results of radiocarbon dating of deep-seated landslides in the area of Vsetín and Frýdek-Místek districts. Geologické výzkumy na Moravě a ve Slezsku 14, 1012.(in Czech with English abstract).Google Scholar
Baroň, I., Cílek, V., Krejčí, O., Melichar, R., Hubatka, F., (2004). Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, Outer Western Carpathians (Czech Republic). Natural Hazards and Earth System Sciences 4, 549562.Google Scholar
Baroň, I., Agliardi, F., Ambrosi, Ch., Crosta, G.B., (2005). Numerical analysis of deep-seated mass movements in the Magura Nappe; Flysch Belt of the Western Carpathians (Czech Republic). Natural Hazards and Earth System Sciences 5, 367374.Google Scholar
Baroň, I., Baldík, V., Fifernová, M., (2010). Preliminary assessment of a recent denudation rate of the Flysch Belt of Outer West Carpathians — case study: Bystřička River catchment in Vsetínské Hills. Geologické výzkumy na Moravě a ve Slezsku 17, 1013.(in Czech with English abstract).Google Scholar
Baroň, I., Řehánek, T., Vošmík, J., Musel, V., Kondrová, L., (2011). Report on a recent deep-seated landslide at Gírová Mt., Czech Republic, triggered by a heavy rainfall: the Gírová Mt., Outer West Carpathians; Czech Republic. Landslides 8, 355361.Google Scholar
Bertolini, G., Casagli, N., Ermini, L., Malaguti, C., (2004). Radiocarbon data on Lateglacial and Holocene landslides in the Northern Apennines. Natural Hazards 31, 645662.Google Scholar
Biely, A.(ed.), (1996). Geological map of the Slovak Republic 1: 500 000. Geologická služba Slovenskej republiky, Bratislava [in Slovak], .Google Scholar
Bíl, M., Müller, I., (2008). The origin of shallow landslides in Moravia (Czech Republic) in the spring 2006. Geomorphology 99, 246253.Google Scholar
Bookhagen, B., Thiede, R.C., Strecker, M.R., (2005). Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149152.Google Scholar
Borgatti, L., Soldati, M., (2010). Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120, 5664.Google Scholar
Brideau, M.A., Yan, M., Stead, D., (2009). The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103, 3049.Google Scholar
Bronk Ramsey, C., (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Cháb, J., Stráník, Z., Eliáš, M.(2007). Geological map of the Czech Republic 1: 500 000. Česká geologická služba, Praha (in Czech)..Google Scholar
Chigira, M., Wang, W.N., Furuya, T., Kamai, T., (2003). Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Engineering Geology 68, 259273.CrossRefGoogle Scholar
Clague, J.J., Friele, P.A., Hutchinson, I., (2003). Chronology and hazards of large debris flows in the Cheekye River basin, British Columbia, Canada. Environmental and Engineering Geoscience 9, 99115.Google Scholar
Corominas, J., Moya, J., (2008). A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology 102, 193213.Google Scholar
Cruden, D.M., Varnes, D.J., (1996). Landslide types and processes. Turner, A.K., Shuster, R.L., Landslides: Investigation and Mitigation. Transportation Research Board, Washington DC.3675.Google Scholar
Danišík, M., Pánek, T., Matýsek, D., Dunkl, I., Frisch, W., (2008). Apatite fission track and (U–Th)/He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians. Zeitschrift für Geomorphologie 52, 273289.Google Scholar
Dortch, J.M., Owen, L.A., Haneberg, W.C., Caffee, M.W., Dietsch, C., Kamp, U., (2009). Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews 28, 10371054.Google Scholar
Evans, S.G., Roberts, N.J., Ischuk, A., Delaney, K.B., Morozova, G.S., Tutubalina, O., (2009). Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Engineering Geology 109, 195212.Google Scholar
Flint, J.J., (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research 10, 969973.Google Scholar
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F., (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72, 272299.Google Scholar
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D., (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters 279, 222229.CrossRefGoogle Scholar
Hancox, G.T., McSaveney, M.J., Manville, V.R., Davies, T.R., (2005). The October 1999 Mt Adams rock avalanche and subsequent landslide dam-break flood and effects in Poerua River, Westland, New Zealand. New Zealand Journal of Geology and Geophysics 48, 683705.Google Scholar
Kalis, A.J., Merkt, J., Wunderlich, J., (2003). Environmental changes during the Holocene climatic optimum in central Europe — human impact and natural causes. Quaternary Science Reviews 22, 3379.Google Scholar
Kemeny, J., (2003). The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities: a fracture mechanics approach. Rock Mechanics and Rock Engineering 36, 2738.CrossRefGoogle Scholar
Klimeš, J., Baroň, I., Pánek, T., Kosačík, T., Burda, J., Kresta, F., Hradecký, J., (2009). Investigation of recent catastrophic landslides in the flysch belt of Outer Western Carpathians (Czech Republic): progress towards better hazard assessment. Natural Hazards and Earth System Sciences 9, 119128.Google Scholar
Korup, O., (2006). Rock-slope failure and the river long profile. Geology 34, 4548.Google Scholar
Korup, O., McSaveney, M.J., Davies, T.R.H., (2004). Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphology 61, 189207.CrossRefGoogle Scholar
Korup, O., Montgomery, D.R., Hewitt, K., (2010). Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes. Proceedings of the National Academy of Sciences 107, 53175322.CrossRefGoogle ScholarPubMed
Krejčí, O., Baroň, I., Bíl, M., Hubatka, F., Jurová, Z., Kirchner, K., (2002). Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Physics and Chemistry of the Earth 27, 15671576.Google Scholar
Lang, A., Moya, J., Corominas, J., Schrott, L., Dikau, R., (1999). Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30, 3352.Google Scholar
Lenhardt, W.A., Švancara, J., Melichar, P., Pazdírková, J., Havíř, J., Sýkorová, Z., (2007). Seismic activity of the Alpine–Carpathian–Bohemian Massif region with regard to geological and potential field data. Geologica Carpathica 58, 397412.Google Scholar
Lopez Saez, J., Corona, C., Stoffel, M., Schoeneich, P., Berger, F., (2012). Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138, 189202.Google Scholar
Magny, M., (2004). Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113, 6579.Google Scholar
Margielewski, W., (2006a). Records of the Late Glacial–Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. Area (Polish Outer Carpathians). Folia Quaternaria 76, 1149.Google Scholar
Margielewski, W., (2006b). Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77, 4768.Google Scholar
Margielewski, W., Krąpiec, M., Valde-Nowak, P., Zernitskaya, V., (2010). A Neolithic yew bow in the Polish Carpathians: evidence of the impact of human activity on mountainous palaeoenvironment from the Kamiennik landslide peat bog. Catena 80, 141153.Google Scholar
Margielewski, W., Kołaczek, P., Michzcyński, A., Obidowicz, A., Pazdur, A., (2011). Record of the meso-and neoholocene palaeoenvironmental changes in the Jesionowa landslide peat bog (Beskid Sądecki Mts. Polish Outer Carpathians). Geochronometria 38, 138154.Google Scholar
Niggemann, S., Mangini, A., Mudelsee, M., Richter, D.K., Wurth, G., (2003). Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland, Germany. Earth and Planetary Science Letters 216, 539547.Google Scholar
Notebaert, B., Verstraeten, G., (2010). Sensitivity of West and Central European river systems to environmental changes during the Holocene: a review. Earth-Science Reviews 103, 163182.CrossRefGoogle Scholar
Pánek, T., Smolková, V., Hradecký, J., Šilhán, K., (2009a). Late Holocene evolution of landslides in the frontal part of the Magura Nappe: Hlavatá Ridge, Moravian–Silesian Beskids (Czech Republic). Moravian Geographical Reports 17, 211.Google Scholar
Pánek, T., Hradecký, J., Minár, J., Hungr, O., Duaek, R., (2009b). Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, Czech Republic. Geomorphology 103, 414429.CrossRefGoogle Scholar
Pánek, T., Hradecký, J., Smolková, V., Šilhán, K., Minár, J., Zernitskaya, V., (2010). The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula flow-like landslide and related dammed lakes. Geomorphology 120, 233247.Google Scholar
Pánek, T., Šilhán, K., Tábořík, P., Hradecký, J., Smolková, V., Lenart, J., Brázdil, R., Kašičková, L., Pazdur, A., (2011a). Catastrophic slope failure and its origins: case of the May 2010 Girová Mountain flow-like rockslide (Czech Republic). Geomorphology 130, 352364.Google Scholar
Pánek, T., Tábořík, P., Klimeš, J., Komárková, V., Hradecký, J., Šťastný, M., (2011b). Deep-seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians: evolutionary model based on kinematic analysis, electrical imaging and trenching. Geomorphology 129, 92112.Google Scholar
Pánek, T., Smolková, V., Hradecký, J., Sedláček, J., Zernitskaya, V., Kadlec, J., Pazdur, A., Řehánek, T., (2013). Late-Holocene evolution of a floodplain impounded by the Smrdutá landslide, Carpathian Mountains (Czech Republic). The Holocene 23, 218229.Google Scholar
Picha, F.J., Stráník, Z., Krejčí, O., (2006). Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland, Czech Republic. Golonka, J., Picha, F.J., The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. The American Association of Petroleum Geologists Tulsa, Oklahoma.49175.Google Scholar
Prager, C., Ivy-Ochs, S., Ostermann, M., Synal, H.-A., Patzelt, G., (2009). Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria). Geomorphology 103, 93103.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Groothes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van Der Plicht, J., Weyhenmayer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Rybář, J., Stemberk, J., (2000). Avalanche-like occurrences of slope deformations in the Czech Republic and coping with their consequences. Landslide News 13, 2833.Google Scholar
Sanhueza-Pino, K., Korup, O., Hetzel, R., Munack, H., Weidinger, J.T., Dunning, T., Ormukov, Ch., Kubik, P.W., (2011). Glacial advances constrained by 10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan. Quaternary Research 76, 295304.Google Scholar
Schlunegger, F., Badoux, A., Mc Ardell, B.W., Gwerder, C., Schnydrig, D., Rieke-Zapp, D., Molnar, P., (2009). Limits of sediment transfer in an alpine debris-flow catchment, Illgraben, Switzerland. Quaternary Science Reviews 28, 10971105.Google Scholar
Šimeková, J., Martinčeková, T.(2006). Atlas of Slope Stability Maps, Slovakia, 1:50 000. INGEO ighp, Žilina, Slovak Republic [in Slovak].Google Scholar
Smolková, V., (2011). Slope Deformations and their Impact on Valley Bottom Development (in the Czech Part of the Carpathians). (PhD thesis)University of Ostrava, Ostrava.(134 pp. [in Czech with English abstract]).Google Scholar
Soldati, M., Corsini, A., Pasuto, A., (2004). Landslides and climate change in the Italian Dolomites. Catena 55, 141161.Google Scholar
Starkel, L., Soja, R., Michczyńska, D.J., (2006). Past hydrological events reflected in Holocene history of Polish rivers. Catena 66, 2433.Google Scholar
Starkel, L., Gębica, P., Superson, J., (2007). Last Glacial–Interglacial cycle in the evolution of river valleys in southern and central Poland. Quaternary Science Reviews 26, 29242936.Google Scholar
Whipple, K.X., (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences 32, 151185.Google Scholar
Záruba, Q., (1922). Study on landslide terrains in the Vsetín and Vallachian Region. Práce z geologického ústavu čes. vys. učení technického v Praze. 170177.(in Czech).Google Scholar
Zattin, M., Andreucci, B., Jankowski, L., Mazzoli, S., Szaniawski, R., (2011). Neogene exhumation in the Outer Western Carpathians. Terra Nova 23, 283291.Google Scholar