Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T09:49:31.377Z Has data issue: false hasContentIssue false

Holocene Climate Variability in Sicily from a Discontinuous Stalagmite Record and the Mesolithic to Neolithic Transition

Published online by Cambridge University Press:  20 January 2017

Silvia Frisia*
Affiliation:
Museo Tridentino di Scienze Naturali, via Calepina 14, 38100 Trento, Italy
Andrea Borsato
Affiliation:
Museo Tridentino di Scienze Naturali, via Calepina 14, 38100 Trento, Italy
Augusto Mangini
Affiliation:
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
Christoph Spötl
Affiliation:
Institut für Geologie und Paläontologie, Leopold-Franzens-Universität, Innrain 52, 6020 Innsbruck, Austria
Giuliana Madonia
Affiliation:
Dipartimento di Geologia e Geodesia, Università di Palermo, Corso Tukory 131, 90134 Palermo, Italy
Ugo Sauro
Affiliation:
Dipartimento di Geografia, Università di Padova, Via del Santo 26, 35123 Padova, Italy
*
*Corresponding author. E-mail addresses:[email protected] (S. Frisia), [email protected] (A. Borsato), [email protected] (A. Mangini), [email protected] (C. Spötl), [email protected], [email protected] (U. Sauro).

Abstract

Fabric and stable isotopic composition of a Holocene stalagmite (CR1) from a cave in northern Sicily record changes in paleorainfall in the early Holocene. High δ13C stable isotope values in the calcite deposited from ca. 8500 to ca. 7500 yr ago are interpreted as reflecting periods of high rainfall. The wet phase was interrupted by two periods of multi-century duration characterized by relatively cool and dry winters centered at ca. 8200 and ca. 7500 yr ago, highlighted by low δ13C and δ18O values. A high variability of δ13C values is recorded from ca. 7500 to ca. 6500 yr ago and indicates that the transition from a pluvial early Holocene to the present-day climate conditions was punctuated by decadal-scale periods of relatively dry winters. In northern Sicily, the traditional elements of the Neolithic appear at ca. 7700 yr ago. It is possible that changes in rainfall influenced the passage from hunter-gathering to farming and sheep-herding economies.

Type
Special Issue Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonioli, F., Silenzi, S., and Frisia, S. Tyrrhenian Holocene palaeoclimate trend from spelean serpulids. Quaternary Science Reviews 20, (2001). 16611670.CrossRefGoogle Scholar
Baker, A., Ito, E., Smart, P.L., and Mc Ewan, R.F. Elevated and variable values of δ13C in speleothems in a British cave system. Chemical Geology 136, (1997). 263270.CrossRefGoogle Scholar
Baldini, J.U.L., McDermott, F., and Fairchild, I.J. Structure of the 8200-year cold event revealed by a speleothem trace element record. Science 296, (2002). 22032206.CrossRefGoogle ScholarPubMed
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., and Halicz, L. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for palaeoclimate research in semiarid regions. Geochimica et Cosmochimica Acta 60, (1996). 337347.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Late Quaternary palaeoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, (1997). 155168.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wassenburg, G.J. The eastern Mediterranean palaeoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, (1999). 8595.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, (2000). 145156.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for palaeorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 66, (2003). 10311050.Google Scholar
Berger, A.L. Long-term variations of caloric insolation resulting from the Earth's orbita element. Quaternary Research 9, (1978). 139167.CrossRefGoogle Scholar
Bertaux, J., Sondag, F., Santos, R., Soubiès, F., Causse, C., Plagnes, V., Le Cornec, F., and Seidel, A. Paleoclimatic record of speleothems in a tropical region: study of laminated sequences from a Holocene stalagmite in Central-West Brazil. Quaternary International 89, (2002). 316.CrossRefGoogle Scholar
Borsato, A., Quinif, Y., Bini, A., Dublyansky, Y., (2005). Open-system alpine speleothems: implications for U-series dating and paleoclimate reconstructions. Studi Trentini di Scienze Naturali, Acta Geologica 80, 7184. (2003).Google Scholar
Burns, S.J., Matter, A., Frank, N., and Mangini, A. Speleothem-based palaeoclimate record from northern Oman. Geology 26, (1998). 499502.2.3.CO;2>CrossRefGoogle Scholar
Camuffo, D., Pagan, E., (2005). Analisi di serie storiche d temperatura e precipitazione in località prossime agli speleotemi. Studi Trentini Scienze Naturali Acta Geologica 80, 3747. (2003).Google Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., Zhao, J., Isola, I., and Bruschi, G. Palaeoclimatic implications of the growth history and stable isotope (δ18O and δ13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy. Earth and Planetary Science Letters 227, (2004). 215229.CrossRefGoogle Scholar
Frank, N., Braum, M., Hambach, U., Mangini, A., and Wagner, G. Warm period growth of travertine during the last interglaciation in southern Germany. Quaternary Research 54, (2000). 3848.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Fairchild, I.J., and McDermott, F. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sedimentary Research 70, (2000). 11831196.CrossRefGoogle Scholar
Frisia, S., Borsato, A., McDermott, F., Spiro, B., Fairchild, I., Longinelli, A., Selmo, E., Pedrotti, A., Dalmeri, G., Lanzinger, M., and van der Borg, K. Holocene climate fluctuations in the Alps as reconstructed from speleothems. Preistoria Alpina 34, (2001). 111118.Google Scholar
Frisia, S., Borsato, A., Spötl, C., Villa, I.M., and Cucchi, F. Climate variability in the South-Eastern Alps of Italy over the last 17,000 years reconstructed from a stalagmite record. Boreas 34, (2005). 445455.CrossRefGoogle Scholar
Frumkin, A., Carmi, I., Gopher, A., Ford, D.C., Schwarcz, H.P., and Tsuk, T. A Holocene millennial scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel. The Holocene 9, (1999). 677682.CrossRefGoogle Scholar
Frumkin, A., Ford, D.C., and Schwarcz, H.P. Palaeoclimate and vegetation of the last glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles 14, (2000). 863870.CrossRefGoogle Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189211.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van Exeter, S. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, (2003). 833837.CrossRefGoogle ScholarPubMed
Hendy, C.H. The isotopic composition of speleothems: I. The calculations of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta 35, (1971). 801824.CrossRefGoogle Scholar
Hoyos, M., Soler, V., Canaveras, J.C., Sanchez-Moral, S., and Sanz-Rubio, E. Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo cave, Northern Spain). Environmental Geology 33, (1998). 231242.CrossRefGoogle Scholar
Lasaga, A.C. Rate laws of chemical reactions. Lasaga, A.C. Kinetics of geochemical processes. Mineralogical Society of America, Reviews in Mineralogy vol. 8, (1981). 168.Google Scholar
Longinelli, A., and Selmo, E. Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology 270, (2003). 7588.Google Scholar
Mangini, A., Spötl, C., and Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth and Planetary Science Letters 235, (2005). 741751.CrossRefGoogle Scholar
Mannino, M.A., Thomas, K.D., Piperno, M., Tusa, S., Tagliacozzo, A., in press. Fine tuning the radiocarbon chronology of the Grotta dell'Uzzo (Trapani). Atti della Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia 15.Google Scholar
Marchal, O., Cacho, I., Stocker, T.F., Grimalt, J.O., Calvo, E., Martrat, B., Shackleton, N., Vautravers, M., Cortijo, E., van Kreveld, S., Andersson, C., Koç, N., Chapman, M., Sbaffi, L., Duplessy, J.-C., Sarnthein, M., Turon, J.-L., Duprat, J., and Jansen, E. Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quaternary Science Reviews 21, (2002). 455483.CrossRefGoogle Scholar
McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, (2004). 901918.CrossRefGoogle Scholar
McDermott, F., Frisia, S., Huang, Y., Longinelli, A., Spiro, B., Heaton, T.H.E., Hawkesworth, C.J., Borsato, A., Keppens, E., Fairchild, I.J., van der Borg, K., Verheyden, S., and Selmo, E. Holocene climate variability in Europe: evidence from δ18O and textural variations in speleothems. Quaternary Science Reviews 18, (1999). 10211038.CrossRefGoogle Scholar
McDermott, F., Mattey, D.P., and Hawkesworth, C. Centennial scale Holocene climate variability revealed by a high resolution speleothem δ18O record from SW Ireland. Science 294, (2001). 13281331.CrossRefGoogle ScholarPubMed
Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, L.E., and Ito, E. Stable Isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic isotope effects. Geochimica et Cosmochimica Acta 68, (2004). 43814393.CrossRefGoogle Scholar
Mickler, P.J., Stern, L.A., and Banner, J.L. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 118, (2006). 6581.CrossRefGoogle Scholar
Morrill, C., and Jacobsen, R.M. How widespread were climate anomalies 8200 years ago?. Geophysical Research Letters 32, (2005). L19701 http://dx.doi.org/10.1029/23563CrossRefGoogle Scholar
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A. Strong coherence between solar variability and the Monsoon in Oman between 9 and 6 kyrs ago. Nature 411, (2001). 290293.CrossRefGoogle Scholar
Oldfield, F., and Dearing, J.A. The role of human activities in past environmental change. Alverson, K.D., Bradley, R.S., and Pedersen, T.F. Paleoclimate, Global Change and the Future. (2003). Springer, Heidelberg. 143162.Google Scholar
Pedrotti, A. The Neolithic Age in Trentino Alto Adige. Preistoria Alpina 34, (2001). 925.Google Scholar
Pinna, M. Climatologia. (1977). UTET, Torino. 442 pp. Google Scholar
Plagnes, V., Causse, C., Genty, D., Paterne, M., and Blamart, D. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France). Earth and Planetary Science Letters 201, (2002). 87103.CrossRefGoogle Scholar
Proctor, C.J., Baker, A., and Barnes, W.L. A three thousand year record of North Atlantic climate. Climate Dynamics 19, (2002). 449454.Google Scholar
Rohling, E.J., and Pälike, H. Centennial scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, (2005). 975979.CrossRefGoogle Scholar
Rohling, E.J., Mayewski, P.A., Hayes, A., Abu-Zied, R.H., and Casford, S.J.L. Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, (2002). 587593.Google Scholar
Sadori, L., and Narcisi, B. The post-glacial record of environmental history from Lago di Pergusa (Sicily). The Holocene 11, (2001). 655671.CrossRefGoogle Scholar
Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P. Solar cycle variability, ozone and climate. Science 284, (1999). 305308.CrossRefGoogle ScholarPubMed
Spötl, C., and Mangini, A. Stalagmite from Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth and Planetary Science Letters 203, (2002). 507518.CrossRefGoogle Scholar
Spötl, C., Fairchild, I.J., and Tooth, A.F. Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta 69, (2005). 24512468.CrossRefGoogle Scholar
Sprovieri, R., Di Stefano, E., Incarbona, A., and Gargano, M.E. A high-resolution record of the last deglaciation in the Sicily Channel based on foraminifera and calcareous nannofossil quantitative distribution. Palaeogeography, Palaeoclimatology, Palaeoecology 202, (2003). 119142.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Pflicht, J., and Spurk, M. INTCAL 98 radiocarbon age calibration 24,000-0 cal BP. Radiocarbon 40, (1998). 10411083.CrossRefGoogle Scholar
Tinsley, B.A., and Yu, F. Atmospheric ionization and clouds as links between solar activity and climate. Pap, J.M., and Fox, P. Solar Variability and its Effects on Climate. Geophysical Monograph vol. 141, (2004). 31339.Google Scholar
Tusa, S. Origine della società agro pastorale. Tusa, S. La Sicilia nella Preistoria. Seconda Edizione (1992). Ediprint, Palermo. 173191. Palermo Google Scholar
Vacco, D.A., Clark, P.U., Mix, A.C., Cheng, H., and Edwards, R.L. A speleothem record of Younger Dryas cooling, Klamath Mountains, Oregon, USA. Quaternary Research 64, (2005). 249256.CrossRefGoogle Scholar
Wedepohl, K.H. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, (1995). 12171232.CrossRefGoogle Scholar
Wurth, G., Niggeman, S., Richter, D.K., and Mangini, A. The Younger Dryas and Holocene climate record of a stalagmite from Hölloch Cave (Bavarian Alps, Germany). Journal of Quaternary Science 19, (2004). 291298.CrossRefGoogle Scholar