Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T23:18:10.011Z Has data issue: false hasContentIssue false

Holocene climate background for lake evolution in the Badain Jaran Desert of northwestern China revealed by proxies from calcareous root tubes

Published online by Cambridge University Press:  23 June 2022

Zhuolun Li*
Affiliation:
College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, 730030 Lanzhou, China Key Laboratory of Quaternary Chronology and Hydro-Environmental Evolution, China Geological Survey, 050061 Shijiazhuang, China
Xiang Li
Affiliation:
College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, 730030 Lanzhou, China
Shipei Dong
Affiliation:
College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, 730030 Lanzhou, China
Youhong Gao
Affiliation:
College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, 730030 Lanzhou, China
*
*Corresponding author at: College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, 730030 Lanzhou, China. E-mail address: [email protected]; [email protected] (Z. Li).

Abstract

It has been unclear whether Holocene lake evolution in the Badain Jaran Desert of northwestern China, an area in which lakes are mainly recharged by groundwater, responded to climate change. In this study, we analyzed the Mg/Ca ratio and phytolith assemblages from 10 Holocene calcareous root tube samples from the desert to reconstruct changes in effective moisture and mean annual precipitation (MAP) at the millennial scale during the Holocene and to explore the factors affecting lake evolution. Our results revealed that the effective moisture at 7000–5000 cal yr BP was higher than that of 5000–2000 cal yr BP. Similarly, the MAP was higher at 7000–5000 cal yr BP (175 ± 37 to 205 ± 37 mm) than at 5000–2000 cal yr BP (145 ± 37 to 165 ± 39 mm). The expansion of the lakes during the Early Holocene would have resulted from the input of groundwater from the meltwater in the recharge area. High lake levels in the Middle Holocene corresponded to increased monsoonal precipitation and groundwater recharge. The gradual decline of lake levels in the Late Holocene indicated a relatively arid climate with decreased monsoonal precipitation and groundwater recharge.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, A., Loutre, M.-F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Biswas, O., Ghosh, R., Agrawal, S., Morthekai, P., Paruya, D.K., Mukherjee, B., Bera, M., Bera, S., 2021. A comprehensive calibrated phytolith based climatic index from the Himalaya and its application in palaeotemperature reconstruction. Science of the Total Environment 750, 142280.CrossRefGoogle ScholarPubMed
Blinnikov, M., Busacca, A., Whitlock, C., 2002. Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 77101.CrossRefGoogle Scholar
Carter, J.A., 2002. Phytolith analysis and paleoenvironmental reconstruction from Lake Poukawa Core, Hawkes Bay, New Zealand. Global and Planetary Change 33, 257267.CrossRefGoogle Scholar
Chen, J., Li, L., Wang, J., Barry, D.A., Sheng, X., Gu, W., Zhao, X., Chen, L., 2004. Water resources—groundwater maintains dune landscape. Nature 432, 459460.CrossRefGoogle ScholarPubMed
Chen, T., Lai, Z., Liu, S., Wang, Y., Wang, Z., Miao, X., An, F., Yu, L., Han, F., 2019. Luminescence chronology and palaeoenvironmental significance of limnic relics from the Badain Jaran Desert, northern China. Journal of Asian Earth Sciences 177, 240249.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., Vuille, M., 2007. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71, 22502263.CrossRefGoogle Scholar
Dong, C., Wang, N., Chen, J., Li, Z., Chen, H., Chen, L., Ma, N., 2016. New observational and experimental evidence for the recharge mechanism of the lake group in the Alxa Desert, north-central China. Journal of Arid Environments 124, 4861.CrossRefGoogle Scholar
Dong, S., Li, Z., Li, M., Lu, C., Wang, N., Ning, K., 2022. Quantitative reconstruction of consecutive paleolake-level fluctuations by the groundwater recharged lake in the desert hinterland: a case study in the Badain Jaran Desert, Northwestern China. Catena 212, 106051.CrossRefGoogle Scholar
Dutton, A., Lambeck, K., 2012. Ice volume and sea level during the last interglacial. Science 337, 216.CrossRefGoogle ScholarPubMed
Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. Developments in Quaternary Sciences 2, 373424.CrossRefGoogle Scholar
Dykoski, C., Edwards, R., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Esteban, I., Albert, R.M., Eixea, A., Zilhão, J., Villaverde, V., 2017. Neanderthal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain). Archaeological and Anthropological Sciences 9, 265278.CrossRefGoogle Scholar
Fan, J., Xiao, J., Wen, R., Zhang, S., Huang, Y., Yue, J., Wang, X., et al. , 2019. Mineralogy and carbonate geochemistry of the Dali Lake sediments: implications for paleohydrological changes in the East Asian summer monsoon margin during the Holocene. Quaternary International 527, 103112.CrossRefGoogle Scholar
Gao, Q., Tao, Z., Li, B., Jin, H., Zou, X., Zhang, Y., Dong, G., 2006. Palaeomonsoon variability in the southern fringe of the Badain Jaran Desert, China, since 130 ka BP. Earth Surface Processes and Landforms 31, 265283.CrossRefGoogle Scholar
Gao, Y., Li, Z., Wang, N., Li, R., 2019. Controlling factors and the paleoenvironmental significance of chemical elements in Holocene calcareous root tubes in the Alashan Desert, northwest China. Quaternary Research 91, 149162.CrossRefGoogle Scholar
Gao, Y., Li, Z., Zhu, R., Liao, H., 2020a. Stable isotope compositions, sources and paleoenvironmental significance of Holocene calcareous root tubes in the Tengger Desert, northwest China. Catena 195, 104846.CrossRefGoogle Scholar
Gao, Y., Li, Z., Zhu, R., Wang, N., 2020b. Quantitative reconstruction of Holocene millennial-scale precipitation in the Asian monsoon margin of northwest China, revealed by phytolith assemblages from calcareous root tubes in the Tengger Desert. Climate Dynamics 55, 755770.CrossRefGoogle Scholar
Garcin, Y., Melnick, D., Strecker, M.R., Olago, D., Tiercelin, J.-J., 2012. East African mid-Holocene wet–dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth and Planetary Science Letters 331–332, 322334.CrossRefGoogle Scholar
Gates, J.B., Edmunds, W.M., Darling, W.G., Ma, J., Pang, Z., Young, A.A., 2008. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Applied Geochemistry 23, 35193534.CrossRefGoogle Scholar
Gocke, M., Pustovoytov, K., Kühn, P., Wiesenberg, G.L.B., Löscher, M., Kuzyakov, Y., 2011. Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: δ13C, 14C. Chemical Geology 283, 251260.CrossRefGoogle Scholar
Goldsmith, Y., Broecker, W.S., Xu, H., Polissar, P.J., Demenocal, P.B., Porat, N., Lan, J., Cheng, P., Zhou, W., An, Z., 2017. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proceedings of the National Academy of Sciences USA 114, 18171821.CrossRefGoogle ScholarPubMed
Gyawali, A.R., Wang, J., Ma, Q., Wang, Y., Xu, T., Guo, Y., Zhu, L., 2019. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology 516, 101112.CrossRefGoogle Scholar
Hartmann, K., Wünnemann, B., 2009. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quaternary International 194, 2844.CrossRefGoogle Scholar
Horrocks, M., Deng, Y., Ogden, J., Sutton, D.G., 2000. A reconstruction of the history of a Holocene sand dune on Great Barrier Island, northern New Zealand, using pollen and phytolith analyses. Journal of Biogeography 27, 12691277.CrossRefGoogle Scholar
Hou, Y., Long, H., Shen, J., Gao, L., 2021. Holocene lake-level fluctuations of Selin Co on the central Tibetan plateau: regulated by monsoonal precipitation or meltwater? Quaternary Science Reviews 261, 106919.CrossRefGoogle Scholar
[ICPT] International Committee for Phytolith Taxonomy, 2019. International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany 124, 189199.CrossRefGoogle Scholar
Jin, K., Rao, W., Tan, H., Song, Y., Yong, B., Zheng, F., Chen, T., Han, L., 2018. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area. Journal of Hydrology 559, 848860.CrossRefGoogle Scholar
Jin, M., Li, G., Li, F., Duan, Y., Wen, L., Wei, H., Yang, L., Fan, Y., Chen, F., 2015. Holocene shorelines and lake evolution in Juyanze Basin, southern Mongolian Plateau, revealed by luminescence dating. The Holocene 25, 18981911.CrossRefGoogle Scholar
Juggins, S., 2003. C2 User Guide: Software for Ecological and Palaeoecological Data Analysis and Visualisation. Department of Geography, University of Newcastle, Newcastle upon Tyne, UK, pp. 169.Google Scholar
Klappa, C.F., 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27, 613629.CrossRefGoogle Scholar
Kuzyakov, Y., Shevtzova, E., Pustovoytov, K., 2006. Carbonate re-crystallization in soil revealed by 14C labeling: experiment, model and significance for paleo-environmental reconstructions. Geoderma 131, 4558.CrossRefGoogle Scholar
Li, G., Li, P., Liu, Y., Qiao, L., Ma, Y., Xu, J., Yang, Z., 2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum. Earth-Science Reviews 139, 390405.CrossRefGoogle Scholar
Liu, H., Gu, Y., Huang, X., Yu, Z., Xie, S., Cheng, S., 2019. A 13,000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley. Quaternary Science Reviews 212, 8091.CrossRefGoogle Scholar
Liu, J., Milliman, J.D., Gao, S., Cheng, P., 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology 209, 4567.CrossRefGoogle Scholar
Li, Y., Morrill, C., 2010. Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments. Climate Dynamics 35, 11191132.CrossRefGoogle Scholar
Li, Z., Gao, Y., Han, L., 2017. Holocene vegetation signals in the Alashan Desert of northwest China revealed by lipid molecular proxies from calcareous root tubes. Quaternary Research 88, 6070.CrossRefGoogle Scholar
Li, Z., He, Y., Chen, Q., 2018. Radiocarbon dating of aquatic gastropod shells and its significance in reconstructing Quaternary environmental changes in the Alashan Plateau of northwestern China. Geomorphology 318, 1825.CrossRefGoogle Scholar
Li, Z., Pan, N., He, Y., Zhang, Q., 2016a. Evaluating the best evaporation estimate model for free water surface evaporation in hyper-arid regions: a case study in the Ejina basin, northwest China. Environmental Earth Sciences 75, 295.CrossRefGoogle Scholar
Li, Z., Wang, N., Cheng, H., Li, Y., 2016b. Early–middle Holocene hydroclimate changes in the Asian monsoon margin of northwest China inferred from Huahai terminal lake records. Journal of Paleolimnology 55, 289302.CrossRefGoogle Scholar
Li, Z., Wang, N., Cheng, H., Ning, K., Zhao, L., Li, R., 2015a. Formation and environmental significance of late Quaternary calcareous root tubes in the deserts of the Alashan Plateau, northwest China. Quaternary International 372, 167174.CrossRefGoogle Scholar
Li, Z., Wang, N., Li, R., Ning, K., Cheng, H., Zhao, L., 2015b. Indication of millennial-scale moisture changes by the temporal distribution of Holocene calcareous root tubes in the deserts of the Alashan Plateau, northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 496505.CrossRefGoogle Scholar
Li, Z., Wei, M., Zhou, J., Tian, X., 2020a. Arid–humid variations in the summer climate and their influence mechanism in Asian monsoon margin of northwest China during 1960–2010: a case study in the Alashan Plateau. International Journal of Climatology 40, 65746586.CrossRefGoogle Scholar
Li, Z., Zhu, R., Gao, Y., Chim, C.H., Liao, H., 2020b. Recrystallization of Holocene calcareous root tubes in the Tengger Desert, northwest China and its effects on the reliability of paleoenvironmental reconstruction results. Quaternary International 562, 8593.CrossRefGoogle Scholar
Long, H., Lai, Z., Wang, N., Li, Y., 2010. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China. Quaternary Research 74, 4656.CrossRefGoogle Scholar
Lu, H., Miao, X., Zhou, Y., Mason, J., Swinehart, J., Zhang, J., Zhou, L., Yi, S., 2005. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing. Geophysical Research Letters 32, L21716.CrossRefGoogle Scholar
Lu, H., Wu, N., Liu, K., Jiang, H., Liu, T., 2007. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quaternary Science Reviews 26, 759772.CrossRefGoogle Scholar
Lu, H., Wu, N., Yang, X., Jiang, H., Liu, K., Liu, T., 2006. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quaternary Science Reviews 25, 945959.CrossRefGoogle Scholar
Ma, J., Edmunds, W.M., 2006. Groundwater and lake evolution in the Badain Jaran Desert ecosystem, Inner Mongolia. Hydrogeology Journal 14, 12311243.CrossRefGoogle Scholar
Ma, N., Wang, N., Zhao, L., Zhang, Z., Dong, C., Shen, S., 2014. Observation of mega-dune evaporation after various rain events in the hinterland of Badain Jaran Desert, China. Chinese Science Bulletin 59, 162170.CrossRefGoogle Scholar
Ma, N., Wang, N., Zhu, J., Chen, X., Chen, H., Dong, C., 2011. Climate change around the Badain Jaran Desert in recent 50 years. [In Chinese with English abstract.] Journal of Desert Research 31, 15411547.Google Scholar
McDonald, J., Drysdale, R., Hill, D., 2004. The 2002–2003 El Nino recorded in Australian cave drip waters: implications for reconstructing rainfall histories using stalagmites. Geophysical Research Letters 31, L22202. https://doi.org/10.1029/2004GL020859.CrossRefGoogle Scholar
Melnick, D., Garcin, Y., Quinteros, J., Strecker, M.R., Olago, D., Tiercelin, J.-J., 2012. Steady rifting in northern Kenya inferred from deformed Holocene lake shorelines of the Suguta and Turkana basins. Earth and Planetary Science Letters 331–332, 335346.CrossRefGoogle Scholar
Ning, K., Wang, N., Lv, X., Li, Z., Sun, J., An, R., Zhang, L., 2019. A grain size and n-alkanes record of Holocene environmental evolution from a groundwater recharge lake in Badain Jaran Desert, northwestern China. The Holocene 29, 10451058.Google Scholar
Peltier, W., 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5 G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 20, 111149.CrossRefGoogle Scholar
Piperno, D.R., 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleogeologists. Altamira Press, New York.Google Scholar
Prebble, M., Schallenberg, M., Carter, J., Shulmeister, J., 2002. An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand I. Modern assemblages and transfer functions. Journal of Paleolimnology 27, 393413.CrossRefGoogle Scholar
Pustovoytov, K., Schmidt, K., Parzinger, H., 2007. Radiocarbon dating of thin pedogenic carbonate laminae from Holocene archaeological sites. The Holocene 17, 835843.CrossRefGoogle Scholar
Reimer, P.J., Austin, W., Bard, E., Bayliss, A., Talamo, S., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Shao, T., Zhao, J., Zhou, Q., Dong, Z., Ma, Y., 2012. Recharge sources and chemical composition types of groundwater and lake in the Badain Jaran Desert, northwestern China. Journal of Geographical Sciences 22, 479496.CrossRefGoogle Scholar
Shen, J., 2013. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the last glacial maximum: A review and synthesis of lacustrine sediment archives. Chinese Science Bulletin 58, 1731.CrossRefGoogle Scholar
Strömberg, C.A.E., 2004. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207, 239275.CrossRefGoogle Scholar
Sun, J., Hu, W., Wang, N., Zhao, L., An, R., Ning, K., Zhang, X., 2018. Eddy covariance measurements of water vapor and energy flux over a lake in the Badain Jaran Desert, China. Journal of Arid Land 10, 517533.CrossRefGoogle Scholar
Sun, Q., Huguet, A., Zamanian, K., 2021. Outcrop distribution and formation of carbonate rhizoliths in Badain Jaran Desert, NW China. Catena 197, 104975.CrossRefGoogle Scholar
ter Braak, C.J.F., Juggins, S., 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485502.CrossRefGoogle Scholar
Tierney, J.E., Poulsen, C.J., Montanez, I.P., Bhattacharya, T., Feng, R., Ford, H.L., Honisch, B., et al. , 2020. Past climates inform our future. Science 370, 6517.CrossRefGoogle ScholarPubMed
Twiss, P., Suess, E., Smith, R., 1969. Morphological Classification of grass phytoliths. Soil Science Society of America Journal 33, 109115.CrossRefGoogle Scholar
Wang, H., Cheng, Y., Luo, Y., Zhang, C.n., Deng, L., Yang, X., Liu, H., 2019. Variations in erosion intensity and soil maturity as revealed by mineral magnetism of sediments from an alpine lake in monsoon-dominated central east China and their implications for environmental changes over the past 5500 years. The Holocene 29, 18351855.CrossRefGoogle Scholar
Wang, H., Liu, H., Zhao, F., Yin, Y., Zhu, J., Snowball, I., 2012. Early- and mid-Holocene palaeoenvironments as revealed by mineral magnetic, geochemical and palynological data of sediments from Bai Nuur and Ulan Nuur, southeastern inner Mongolia Plateau, China. Quaternary International 250, 100118.CrossRefGoogle Scholar
Wang, M., Dong, Z., Luo, W., Lu, J., Li, J., 2015. Spatial variability of vegetation characteristics, soil properties and their relationships in and around China's Badain Jaran Desert. Environmental Earth Sciences 74, 68476858.CrossRefGoogle Scholar
Wang, N., Ning, K., Li, Z., Wang, Y., Jia, P., Ma, L., 2016. Holocene high lake-levels and pan-lake period on Badain Jaran Desert. Science China Earth Sciences 59, 16331641.CrossRefGoogle Scholar
Wang, S., Ji, L., 1995. Paleolimnology of Hulun Lake. University of Science and Technology of China Press, Hefei.Google Scholar
Wang, W., Liu, J., Zhou, X., 2003. Climate indexes of phytoliths from Homo erectus’ cave deposits in Nanjing. Chinese Science Bulletin 48, 20052009.CrossRefGoogle Scholar
Wang, Y., Cheng, H., Edwards, R., He, Y., Kong, X., An, Z., Wu, J., Kelly, M., Dykoski, C., Li, X., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.CrossRefGoogle ScholarPubMed
Wang, Y., Lu, H., 1993. The Study of Phytolith and Its Application. China Ocean Press, Beijing.Google Scholar
Webb, E.A., Longstaffe, F.J., 2000. The oxygen isotopic compositions of silica phytoliths and plant water in grasses: implications for the study of paleoclimate. Geochimica et Cosmochimica Acta 64, 767780.CrossRefGoogle Scholar
Wen, R., Xiao, J., Fan, J., Zhang, S., Yamagata, H., 2017. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in northern China. Quaternary Science Reviews 176, 2935.CrossRefGoogle Scholar
Wünnemann, B., Wagner, J., Zhang, Y., Yan, D., Wang, R., Shen, Y., Fang, X., Zhang, J., 2012. Implications of diverse sedimentation patterns in Hala Lake, Qinghai Province, China for reconstructing Late Quaternary climate. Journal of Paleolimnology 48, 725749.CrossRefGoogle Scholar
Wu, Y., Wang, N., Zhao, L., Zhang, Z., Chen, L., Lu, Y., , X., Chang, J., 2014. Hydrochemical characteristics and recharge sources of Lake Nuoertu in the Badain Jaran Desert. Chinese Science Bulletin 59, 886895.CrossRefGoogle Scholar
Xu, M., Li, Z., 2016. Accumulated temperature changes in desert region and surrounding area during 1960–2013: a case study in the Alxa Plateau, northwest China. Environmental Earth Sciences 75, 1276.CrossRefGoogle Scholar
Yang, X., 2000. Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30 000 years. Chinese Science Bulletin 45, 10421047.CrossRefGoogle Scholar
Yang, X., Liu, T., Xiao, H., 2003. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years. Quaternary International 104, 99112.CrossRefGoogle Scholar
Yang, X., Ma, N., Dong, J., Zhu, B., Xu, B., Ma, Z., Liu, J., 2010. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quaternary Research 73, 1019.CrossRefGoogle Scholar
Yang, X., Scuderi, L.A., 2010. Hydrological and climatic changes in deserts of China since the late Pleistocene. Quaternary Research 73, 19.CrossRefGoogle Scholar
Yang, X., Scuderi, L., Paillou, P., Liu, Z., Li, H., Ren, X., 2011. Quaternary environmental changes in the drylands of China—a critical review. Quaternary Science Reviews 30, 32193233.CrossRefGoogle Scholar
Yang, X., Williams, M.A.J., 2003. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 51, 4560.CrossRefGoogle Scholar
Yi, L., Lu, X., Nie, Z., Wang, H., Cheng, K., Yang, Y., Li, L., 2020. Delineation of groundwater flow and estimation of lake water flushing time using radium isotopes and geochemistry in an arid desert: the case of Badain Jaran Desert in western Inner Mongolia (CHN). Applied Geochemistry 122, 104740.Google Scholar
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: forms and formation processes. Earth-Science Reviews 157, 117.CrossRefGoogle Scholar
Zhang, H., Peng, J., Ma, Y., Chen, G., Feng, Z., Li, B., Fan, H., Chang, F., Lei, G., Wünnemann, B., 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 4558.CrossRefGoogle Scholar
Zhao, J., Li, X., 2018. Spatial complexity of lake water ions in the Badain Jaran Desert. Journal of Lake Sciences 30, 680692.Google Scholar
Zhu, J., Wang, N., Chen, H., Dong, C., Zhang, H., 2010. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imagery. [In Chinese with English abstract.] Progress in Geography 29, 10871094.Google Scholar
Zhu, R., Li, Z., Gao, Y., Chen, Q., Yu, Q., 2019. Variations in chemical element compositions in different types of Holocene calcareous root tubes in the Tengger Desert, NW China, and their palaeoenvironmental significance. Boreas 48, 800809.CrossRefGoogle Scholar
Zuo, X., Lu, H., Li, Z., Song, B., 2021. Phytolith reconstruction of early to mid-Holocene vegetation and climatic changes in the Lower Yangtze Valley. Catena 207, 105586.CrossRefGoogle Scholar
Zuo, X., Lu, H., Li, Z., Song, B., Xu, D., Zou, Y., Wang, C., Huan, X., He, K., 2016. Phytolith and diatom evidence for rice exploitation and environmental changes during the early mid-Holocene in the Yangtze Delta. Quaternary Research 86, 304315.CrossRefGoogle Scholar