Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T17:58:54.603Z Has data issue: false hasContentIssue false

A High-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the Last 1600 yr

Published online by Cambridge University Press:  20 January 2017

Patrick Austin*
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, UK
Anson Mackay
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, UK
Olga Palagushkina
Affiliation:
Laboratory of Water Ecosystems, Department of Ecology, Kazan State University, 18 Kremlin street, Kazan, Tatarstan Republic, 420008, Russia
Melanie Leng
Affiliation:
NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK
*
*Corresponding author. Fax: +44 20 7679 0565. E-mail address:[email protected] (P. Austin).

Abstract

Formerly the world's fourth largest lake by area, the Aral Sea is presently undergoing extreme desiccation due to large-scale irrigation strategies implemented in the Soviet era. As part of the INTAS-funded CLIMAN project into Holocene climatic variability and the evolution of human settlement in the Aral Sea basin, fossil diatom assemblages contained within a sediment core obtained from the Aral Sea have been applied to a diatom-based inference model of conductivity (r2 = 0.767, RMSEP = 0.469 log10 μS cm− 1). This has provided a high-resolution record of conductivity and lake level change over the last ca. 1600 yr. Three severe episodes of lake level regression are indicated at ca. AD 400, AD 1195–1355 and ca. AD 1780 to the present day. The first two regressions may be linked to the natural diversion of the Amu Darya away from the Aral Sea and the failure of cyclones formed in the Mediterranean to penetrate more continental regions. Human activity, however, and in particular the destruction of irrigation facilities are synchronous with these early regressions and contributed to the severity of the observed low stands.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleshinskaya, Z.V., Tarasov, P.E., Harrison, S.P., (1996). Aral Sea, Kazakhstan-Uzbekistan. Lake Status Records FSU and Mongolia. Available online at: http://www.ncdc.noaa.gov/paleo/lakelevel.html.Google Scholar
Austin, P.J.E., (2006). Palaeoconductivity, lake-level fluctuations and trace element history of the Aral Sea since 400 AD: assessing the impact of natural climatic variability and anthropogenic activity.. Unpublished PhD thesis, University College London, .Google Scholar
Battarbee, R.W., Juggins, S., Gasse, F., Anderson, N.J., Bennion, H., and Cameron, N.G. European Diatom Database (EDDI). An information system for palaeoenvironmental reconstruction. European Climate Science Conference, Vienna City Hall, Vienna, Austria, 19–23 October. (2000). 110.Google Scholar
Birks, H.J.B. Numerical tools in palaeolimnology—progress potentialities and problems. Journal of Paleolimnology 20, (1998). 307332.CrossRefGoogle Scholar
Blanchard, I.M. Mining, Metallurgy and Minting in the Middle Ages. Asiatic Supremacy, 425–1125 AD vol. 1, (2002). Franz Steiner Verlag, Stuttgart.Google Scholar
Bookman, R., Enzel, Y., Agnon, A., and Stein, M. Late Holocene lake levels of the Dead Sea. Bulletin of the Geological Society of America 116, (2004). 555571.CrossRefGoogle Scholar
Boomer, I., Aladin, N., Plotnikov, I., and Whatley, R. The palaeolimnology of the Aral Sea. Quarternary Science Reviews 19, (2000). 12591278.CrossRefGoogle Scholar
Boroffka, N.G.O. and 10 others Human settlements on the northern shores of Lake Aral and water level changes. Mitigation and Adaptation Strategies for Global Change 10, (2005). 7185.CrossRefGoogle Scholar
Bronk Ramsy, C., (2005). OxCal 3.10.Google Scholar
Dearing, J.A., Battarbee, R.W., Dikau, R., Larocque, I., and Oldfield, F. Human–environment interactions: learning from the past. Regional Environmental Change 6, (2006). 116.CrossRefGoogle Scholar
Enzel, Y., Bookman, R., Sharon, D., Gvittzman, H., Dayan, U., Ziv, B., and Stein, M. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60, (2003). 263273.CrossRefGoogle Scholar
Esper, J., Schweingruber, F.H., and Winiger, M. 1300 years of climatic history for Western Central Asia inferred from tree-rings. The Holocene 12/3, (2002). 267277.CrossRefGoogle Scholar
Esper, J., Shiyatov, S.G., Mazepa, V.S., Wilson, R.J.S., Graybill, D.A., and Funkhouser, G. Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends. Climate Dynamics 21, (2003). 699706.CrossRefGoogle Scholar
Friedrich, J., and Oberhaensli, H. Hydrochemical properties of the Aral Sea water in summer 2002. Journal of Marine Systems 47, 1–4 (2004). 7788.CrossRefGoogle Scholar
Fritz, S.C., Juggins, S., Battarbee, Diatom assemblages and ionic characterisation of lakes of the Northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences 50, (1993). 18441856.CrossRefGoogle Scholar
Frumkin, A., Magaritz, M., Carmi, I., and Zak, I. The Holocene climatic record of the salt caves of Mount Sedom, Israel. The Holocene 1, 3 (1991). 191200.CrossRefGoogle Scholar
Gasse, F., Juggins, S., and Ben Khelifa, L. Diatom-based transfer functions for inferring hydrochemical characteristics of African palaeolakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117, (1995). 3154.CrossRefGoogle Scholar
Giralt, S. and 20 others 1000 year environmental history of Lake Issyk-Kul. Nihoul, J.C.J., Zavialov, P.O., and Micklin, P.P. Dying and Dead Seas: Climatic Versus Anthropic Causes. NATO ASI Series vol. 36, (2004). Kluwer Academic Publishers, Dordrecht. 253285.Google Scholar
Glazovsky, N.F. Aral Sea. Mandaych, A.F. Enclosed Seas and Large Lakes of Eastern Europe and Middle Asia. (1995). SPB Academic Publishing bv, Amsterdam. 119155.Google Scholar
Grimm, E.C. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciencs 13, (1987). 1355.CrossRefGoogle Scholar
Hasle, G.R. Some freshwater and brackish water species of the diatom genus Thalassiosira Cleve. Phycologia 17, 3 (1978). 263292.CrossRefGoogle Scholar
Heim, C., (2005). Die Geochemische Zusammensetzung der Sedimente im Aralsee und Sedimentationsprozesse während der letzen 100 Jahre. Diploma thesis, Alfred-Wegener-Institut, Bremerhaven.Google Scholar
Heim, C., Nowaczyk, N.R., Negendank, J.F.W., Leroy, S.A.G., and Ben-Avraham, Z. Near East Desertification: evidence from the Dead Sea. Naturwissenschaften 84, (1997). 398401.CrossRefGoogle Scholar
Kes, A.S. Chronology of the Aral Sea and the sub-Aral region. Geo Journal 35, (1995). 710.Google Scholar
Klinger, Y., Avouac, J.P., Bourles, D., and Tisnerat, N. Alluvial deposition and lake level fluctuations forced by late Quaternary climatic change: the Dead Sea case example. Sedimentary Geology 162, (2003). 119139.CrossRefGoogle Scholar
Krammer, K., Lange-Bertalot, H. Süβwasserflora von Mitteleuropa vols. 2/1–2/4, (1986–1991). Gustav Fischer Verlag, Stuttgart.Google Scholar
Kreutz, J.K., Wake, C.P., Aizen, V.B., DeWayne, C.L., and Synal, H.A. Seasonal deuterium excess in a Tien Shan ice core: influence of moisture transport and recycling in Central Asia. Geophysical Research Letters 30/18, (2003). doi:10.10/29/2003GL017896 Google Scholar
Le Callonnec, L., Person, A., Renard, M., Letolle, R., Nebout, N., Ben Khelifa, L., and Rubanov, I. Preliminary data on chemical changes in the Aral Sea during low-level periods from the last 9000 years. Comptes Rendus Geosciences 337, (2005). 10351044.CrossRefGoogle Scholar
Letolle, R. Histoire de l' Ouzboi, cours fossil de l' Amou Darya: synthese et elements nouveaux. Studia Irinaca 29, 2 (2002). 195240.CrossRefGoogle Scholar
Letolle, R., and Mainguet, M. Histoire de la mer d'Aral (Asie centrale) depuis le dernier maximum glaciaire. Bulletin Societe Geologique de France 168, 3 (1997). 387398.Google Scholar
Letolle, R., Aladin, N., Filipov, I., and Boroffka, N.G.O. The future chemical evolution of the Aral Sea from 2000 to the years 2050. Mitigation and Adaptation Strategies for Global Change 47, 1–4 (2004). Google Scholar
Lioubimtseva, E., Cole, R., Adams, J.M., and Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments 62, (2005). 285308.CrossRefGoogle Scholar
Mirabdullayev, I.M., Joldasova, I.M., Mustafaeva, Z.A., Kazakhbaev, S., Lyubimova, S.A., and Tashmukhamedov, B.A. Succession of the ecosystems of the Aral Sea during its transition from oligohaline to polyhaline waterbody. Journal of Marine Systems 47, 1–4 (2004). 101108.CrossRefGoogle Scholar
Nourgaliev, D.K., Heller, F., Borisov, A.S., Hajdas, I., Bonani, G., Iassonov, P.G., and Oberhänsli, H. Very high resolution paleosecular variation record for the last 1200 years from the Aral Sea. Geophysical Research Letters 30, 17 (2003). 4144.CrossRefGoogle Scholar
Prasad, A.K., and Nienow, J.A. The centric diatom genus Cyclotella (Stephanodiscaceae: Bacillariaophyta) from Florida Bay, USA, with special reference to Cyclotella choctawhatcheeana and Cyclotella desikacharyi a new marine species related to the Cyclotella striata complex. Phycologia 45, 2 (2006). 127140.CrossRefGoogle Scholar
Reed, J.M., (1995). The potential of diatoms and other palaeolimnological indicators for Holocene palaeoclimate reconstruction from Spanish salt lakes, with special reference to the Laguna de Medina (Cádiz, southwest Spain).. Unpublished PhD thesis, University College London, .Google Scholar
Reed, J.M. A diatom inferred transfer function for Spanish salt lakes. Journal of Paleolimnology 19, (1998). 339416.Google Scholar
Rubanov, I.V., Ischniyanov, D.P., and Baskakova, M.A. Geology of the Aral Sea. Tashkent (1987). (248 pp.; in Russian) Google Scholar
Rusakova, O.M. Brief characteristics of the qualitative content of phytoplankton of the Aral Sea during Spring and Autumn 1992. Proceedings of the Zoological Institute, Russian Academy of Science 262, 1 (1995). 195207. (in Russian) Google Scholar
Ryves, D.B., Juggins, S., Fritz, S.C., and Battarbee, R.W. Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 172, (2001). 99113.CrossRefGoogle Scholar
Savoskul, O.S., and Solomina, O.N. Late Holocene glacier variations in the frontal and inner ranges of the Tien Shan, central Asia. The Holocene 6, 1 (1996). 2535.CrossRefGoogle Scholar
Schilman, B., Ayalon, A., Bar-Matthews, M., Kagan, E.J., and Almogi-Labin, A. Sea-land palaeoclimate correlation in the Eastern Mediterranean region during the Late Holocene. Israel Journal of Earth Sciences 51, (2002). 181190.CrossRefGoogle Scholar
Servant-Vildary, S., and Roux, M. Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia 197, (1990). 267290.CrossRefGoogle Scholar
Shermatov, E., Nutrayev, B., Muhamedgalieva, U., and Shermatov, U. Analysis of water resources variability of the Caspian and Aral Sea on the basis of solar activity. Journal of Marine Systems 47, (2005). 137142.CrossRefGoogle Scholar
Snoeijs, P. Intercalibration and Distribution of Diatom Species in the Baltic Sea vols. I–V, (1993–1996). Opulus, Upsala.Google Scholar
Sorrel, P., (2006). The Aral Sea: a Palaeoclimate archive. Doctoral thesis Institut für Geowissenschaften, Universtät Potsdam.Google Scholar
Sorrel, P., Popescu, S.-M., Head, M.J., Suc, J.P., Klotz, S., and Oberhänsli, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 234, (2006). 304327.CrossRefGoogle Scholar
Sorrel, P., Popescu, S.-M., Klotz, S., Suc, J.-P., and Oberhaensli, H. Climatic variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes. Quaternary Research 67, (2007). 357370.CrossRefGoogle Scholar
Stager, J.C., Cumming, B., and Meeker, L. A high-resolution 11,400-yr diatom record from Lake Victoria, East Africa. Quaternary Research 47, (1997). 8189.CrossRefGoogle Scholar
Stone, J.R., and Fritz, S.C. Three-dimensional modelling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic:benthic ratios. Limnology and Oceanography 49/5, (2004). 15401548.CrossRefGoogle Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., and Dunbar, R.B. A late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 139164.CrossRefGoogle Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO reference manual and user's guide to Canoco for Windows: software for Canonical Community Ordination version 4.5. (2002). Microcomputer Power, Ithica, NY.Google Scholar
Treydte, K.S., Schleser, G.H., Helle, G., Frank, D.C., Winiger, M., Haug, G.H., and Esper, J. The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440, (2006). 11791182.CrossRefGoogle ScholarPubMed
Tsvetsinskaya, E.A., Vainberg, B.I., and Glushko, E.V. An integrated assessment of landscape evolution, long-term climate variability, and land use in the Amu Darya Prisarykamysh delta. Journal of Arid Environments 51, (2002). 363381.CrossRefGoogle Scholar
Wilson, S.E., Cumming, B.F., and Smol, J.P. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake data set from Western North America. Canadian Journal of Fisheries and Aquatic Sciences 53, (1996). 15801594.Google Scholar
Witkowski, A. Recent and fossil diatom flora of the Gulf of Gadansk. (1994). Southern Baltic Sea. J. Cramer, Berlin.Google Scholar
Witkowski, A., Lange-Bertalot, H., Metzelin, D. Diatom Flora of Marine Coasts vol. I, (2000). Koeltz, Koenigstein.Google Scholar
Yakir, Y., Issar, A., Gat, J., Adar, E., Trimborn, P., and Lipp, J. 13C and 18O of wood from the Roman siege rampart in Masada, Israel (AD 70–73): evidence for a less arid climate in the region. Geochimica et Cosmochimica Acta 58, 16 (1994). 35353539.CrossRefGoogle Scholar
Yang, X., Kamenik, C., Schmidt, R., and Wang, S. Diatom-based conductivity and water level inference models from Eastern Tibetan (Qinghai-Xizang) Plateau lakes. Journal of Paleolimnology 31, (2003). 119.CrossRefGoogle Scholar
Zavialov, P. Physical Oceanography of the Dying Aral Sea. (2005). Springer, Chichester.Google Scholar
Zech, W., Glaser, B., Ni, A., Petrov, M., and Lemzin, I. Soils as indicators of the Pleistocene and Holocene landscape evolution in the Alay Range (Kyrgystan). Quaternary International 65/66, (2000). 161169.CrossRefGoogle Scholar