Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T06:48:15.810Z Has data issue: false hasContentIssue false

The GISP2 δ18O Climate Record of the Past 16,500 Years and the Role of the Sun, Ocean, and Volcanoes

Published online by Cambridge University Press:  20 January 2017

Minze Stuiver
Affiliation:
Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, Washington 98195
Pieter M. Grootes
Affiliation:
Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, Washington 98195
Thomas F. Braziunas
Affiliation:
Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, Washington 98195

Abstract

Measured 18O/16O ratios from the Greenland Ice Sheet Project 2 (GISP2) ice core extending back to 16,500 cal yr B.P. provide a continuous record of climate change since the last glaciation. High-resolution annual 18O/16O results were obtained for most of the current millennium (A.D. 818-1985) and record the Medieval Warm Period, the Little Ice Age, and a distinct 11-yr 18O/16O cycle. Volcanic aerosols depress central Greenland annual temperature (∼1.5°C maximally) and annual 18O/16O for about 4 yr after each major eruptive event. On a bidecadal to millennial time scale, the contribution of solar variability to Holocene Greenlandic temperature change is ∼0.4°C. The role of thermohaline circulation change on climate, problematic during the Holocene, is more distinct for the 16,500-10,000 cal yr B.P. interval. (Analogous to 14C age calibration terminology, we express time in calibrated (cal) yr B.P. (A.D. 1950 = 0 cal yr B.P.)). The Oldest Dryas/Bølling/Older Dryas/Allerød/Younger Dryas sequence appears in great detail. Bidecadal variance in 18O/16O, but not necessarily in temperature, is enhanced during the last phase of lateglacial time and the Younger Dryas interval, suggesting switches of air mass transport between jet stream branches. The branched system is nearly instantaneously replaced at the beginning of the Bølling and Holocene (at ∼14,670 and ∼11,650 cal yr B.P., respectively) by an atmospheric circulation system in which 18O/16O and annual accumulation initially track each other closely. Thermodynamic considerations of the accumulation rate-temperature relationship can be used to evaluate the 18 O/16O-temperature relationship. The GISP2 ice-layer-count years of major GISP2 climate transitions also support the use of coral 14C ages for age calibration.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R. B. Meese, D. A. Shuman, C. A. Gow, A. J. Taylor, K. C. Grootes, P. M. White, J. W. C., Ram, M. Waddington, E. D. Mayewski, P. A., and Zielinski, G. A. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362 , 527529.Google Scholar
Alley, R. B. Spinelli, G. A., Zielinski, G. A. Taylor, K. C., and Shuman, C. A. (1995). Time-evolution of climate variability in Central Greenland from the GISP2 deep ice core, and the 8.2 ka event: Instability in the absence of large, mid-latitude ice sheets, [abstract] EOS 76(17), S716.Google Scholar
Bard, E. Arnold, M. Fairbanks, R. G., and Hamelin, B. (1993). 230Th-234U and l4C ages obtained by mass spectrometry on corals. Radiocarbon 35 , 191199.Google Scholar
Bard, E. Arnold, M. Mangerud, J. Paterne, M. Labeyrie, L. Duprat, J. Mélières, MA. Sønstegaard, E., and Duplessy, J-C. (1994). The North-Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126 , 275287.Google Scholar
Barlow, L. K. (1994). Evaluation of seasonal to decadal scale deuterium and deuterium excess signals, GISP2 ice core, Summit, Greenland, A.D. 1270–1985. Ph.D. dissertation, Univ. of Colorado.Google Scholar
Beer, J. Blinov, A. Bonani, G. Finkel, R. C. Hofrnann, H. J. Lehmann, B. Oeschger, H. Sigg, A. Schwander, J. Staffelbach, T. Stauffer, B. Suter, M., and Wolfli, W. (1990). Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347 , 164166.Google Scholar
Beer, J. Joos, F. Lukasczyk, Ch. Mende, W. Rodriguez, J. Siegenthaler, U., and Stellmacher, R. (1994). 10Be as an indicator of solar variability and climate. In “The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate” ( Nesme-Ribes, E., Ed.), NATO ASI series I: Global Environmental Change, Vol. 25, pp. 221233. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Björck, S., and Möller, P. (1987). Late Weichselian environmental history in southeastern Sweden during the deglaciation of the Scandinavian Ice Sheet. Quaternary Research 28 , J-37.Google Scholar
Blanchon, P., and Shaw, J, (1995). Reef drowning during the last deglaciation: Evidence for catastrophic sealevel rise and ice-sheet collapse. Geology 23 , 48.Google Scholar
Bradley, R. S., and Jones, P. D. (1993). ‘Little Ice Age’ summer temperature variations: Nature and relevance. The Holocene 3 , 367376.Google Scholar
Braziunas, T. F, (1990). Nature and origin of variations in late-Glacial and Holocene atmospheric 14C as revealed by global carbon cycle modeling. Ph.D. dissertation, Univ. of Washington.Google Scholar
Broecker, W. S., and Denton, G. (1989). The role of ocean-atmosphere reorganizations in glacial cycles. Geochimica et Cosmochimica Acta 53 , 24652501.Google Scholar
Charles, C. D. Rind, D. Jouzel, J. Koster, R. D., and Fairbanks, R. G. (1994). Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science 263 , 508511.Google ScholarPubMed
Clausen, H. B. Gundestrup, N. S., and Johnson, S. J. (1988). Glaciological investigations in the Crête area, Central Greenland: A search for a new deep-drilling site. Annals of Glaciology 10 , 1015.Google Scholar
Cuffey, K. M. Alley, R. B. Grootes, P. M. Bolzan, J. M., and Anandakrishan, S. (1994). Calibration of the δ18O isotopic paleothermometer for central Greenland, using borehole temperatures. Journal of Glaciology 40(135), 341349.Google Scholar
Cuffey, K. M. Clow, G. D. Alley, R. B. Stuiver, M., and Waddington, E. D., and Saltus, R. W. (in press). Large arctic temperature change at the Glacial-Holocene transition. Science CrossRefGoogle Scholar
Cutler, N. N. Raymond, C. F. Waddington, E. D. Meese, D. A., and Alley, R. B. (in press). The effect of ice sheet thickness change on the accumulation history inferred from GISP2 layer thicknesses. Annals of Glaciology. CrossRefGoogle Scholar
Damon, P. E., and Sonett, C. P. (1991). Solar and terrestrial components of the atmospheric l4C variation spectrum. In “The Sun in Time” (Sonett, C. P. Giampa, M. S., and Matthews, M. S., Eds.), pp. 360388. Univ. of Arizona Press, Tucson, AZ.Google Scholar
Dansgaard, W. Johnsen, S. J. Clausen, H. B., and Gundestrup, N. (1973). Stable isotope glaciology. Meddelelser om Grønland 197(2), 153.Google Scholar
Dansgaard, W. Johnsen, S. J. Clausen, H. B. Dahl-Jensen, N. Gundestrup, N., and Hammer, C. U. (1984). North Atlantic climatic oscillations revealed by deep Greenland ice cores. In “Climate Processes and Climate Sensitivity” (Hansen, J. E. and Takahashi, T., Eds.), Geophysical Monographs 29, pp. 288298.CrossRefGoogle Scholar
Dansgaard, W. Johnsen, S. J. Clausen, H. B. Dahl-Jensen, D. Gundestrup, N. S. Hammer, C. U. Hvidberg, C. S. Steffensen, J. P. Sveinbjömsdottir, A. E. Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364 , 218220.Google Scholar
Eddy, J. A. (1976). The Maunder minimum. Science 192 , 11891202.Google ScholarPubMed
Edwards, R. L. Beck, J. W. Burr, G. S. Donahue, D. J. Chappell, J. M. A., Bloom, A. L. Druffel, E. R. M., and Taylor, F. W. (1993). A large drop in atmospheric l4C/l2C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260 , 962968.Google Scholar
Fairbanks, R. B. Charles, C. D.. and Wright, J. D. (1992). Origin of global meltwater pulses. In “Radiocarbon After Four Decades” (Taylor, R. E. Long, A., and Kra, R. S., Eds.), pp. 473500. Springer-Verlag, New York.CrossRefGoogle Scholar
Grootes, P. M. Stuiver, M. White, J. W. C., Johnsen, S., and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366 , 552554.Google Scholar
Gundestrup, N. S. Dahl-Jensen, D. Johnson, S. J., and Rossi, A. (1993). Borehole survey a( dome GRIP 1991. Cold Regions Science and Technology 21 , 399402.Google Scholar
Hammer, C. U. (1982). The history of atmospheric composition as recorded in ice sheets. In “Atmospheric Chemistry” (Goldberg, E. D., Eds.), Report of Dahlem Workshop, Berlin, pp. 119134. Springer-Verlag, Heidelberg.Google Scholar
Johnsen, S. J. Clausen, H. B. Dansgaard, W. Fuhrer, K. Gundestrup, N. Hammer, C. U. Iversen, P. Jouzel, J. Stauffer, B., and Steffensen, J. P. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359 , 311313.Google Scholar
Johnsen, S. J., and Robin, G. de Q. (1983). Diffusion of stable isotopes. In “The Climatic Record in Polar Ice Sheets” (Robin, G. de Q., Ed.), pp. 5763. Cambridge Univ. Press, Cambridge, UK.Google Scholar
Kapsner, W. R. Alley, R. B. Shuman, C. A. Anandakrishnan, S., and Grootes, P. M. (1995). Dominant influence of atmospheric circulation on snow accumulation in Greenland over the past 18,000 years. Nature 373 , 5254.Google Scholar
Kutzbach, J. E., and Webb, T. (1993). Conceptual basis for understanding Late-Quaternary climates. In “Global Climates since the Last Glacial Maximum,” (Wright, H. E. Kutzbach, J. E. Webb, T. Ruddiman, W. F. Street-Perrott, F. A., and Bartlein, P. J., Eds.), pp. 511. Univ. of Minnesota Press, Minneapolis.Google Scholar
Labitzke, K., and van Loon, H. (1988). Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere in winter. Journal of Atmospheric and Terrestrial Physic 50 , 197206.Google Scholar
Lamb, H. H. (1977). “Climate: Present, Past and Future. Vol. 2 Climatic History and the Future,” pp. 453454, Methuen, London.Google Scholar
Lehman, S. J., and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356 , 757762.Google Scholar
Lingenfelter, R. E. (1963). Production of carbon 14 by cosmic-ray neutrons. Reviews of Geophysics 1 , 3555.Google Scholar
Mangerud, J. Andersen, S. T. Berglund, B. E., and Donner, J. J. (1974). Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3 , 109128.Google Scholar
Mayewski, P. A. Meeker, L. D. Whitlow, S. Twickler, M. S. Morrison, M. C. Bloomfield, P. Bond, G. C. Alley, R. B. Gow, A. J. Grootes, P. M. Meese, D. A. Ram, M. Taylor, K. C., and Wumkes, W. (1994). Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263 , 17471751.Google Scholar
Mazaud, A. Laj, C. Bard, E. Arnold, M., and Trie, E. (1991). Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18 , 18851888.Google Scholar
McElhinny, M. W., and Senanayake, W. E. (1982). Variations in the geomagnetic dipole 1: The past 50,000 years. Journal of Geomagnetism and Geoelectricity 34 , 3951.Google Scholar
Meese, D. A. Alley, R. B. Gow, A. J. Grootes, P. M. Mayewski, P. A. Ram, M. Taylor, K. C. Waddington, I.E., and Zielinski, G. A. (1994a). “Preliminary Depth-Age Scale of the GISP2 Ice Core,” CRREL Special Report 94-1, 66 p.Google Scholar
Meese, D. A. Gow, A. J. Grootes, P. M. Mayewski, P. A. Ram, M. Stuiver, M. Taylor, K. C. Waddington, E. D., and Zielinski, G. A., (1994b). The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Science 266 , 16801682.Google Scholar
Newhall, C. G., and Self, S. (1982). The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research 87 , 12311238.Google Scholar
Nilsson, T. (1983). “The Pleistocene, Geology and Life in the Quaternary Ice Age.” Reidel, Dordrecht.Google Scholar
O’Brien, K. (1979). Secular variations in the production of cosmogenic isotopes. Journal of Geophysical Research 84 , 423431.Google Scholar
O’Brien, D. P., and Currie, R. G. (1993). Observations of the l8.6-year cycle of air pressure and a theoretical model to explain certain aspects of this signal. Climate Dynamics 8 , 287298.Google Scholar
Ogilvie, A. E. J. (1984). The past climate and sea-ice record from Iceland, Part 1: Data to A.D. 1780. Climatic Change 6 , 131152.Google Scholar
Quinn, W. H., and Neal, V. T. (1992). The historical record of El Nino events. In “Climate Since AD 1500, London and New York” (Bradley, R. S. and Jones, P. D., Eds.), pp. 623648. Routledge/Chapman and Hall, London.Google Scholar
Schatten, K. H. (1988). A model for solar constant secular changes. Geophysical Research Letters 15 , 121124.Google Scholar
Schlesinger, M. E., and Ramankutty, N. (1994). An oscillation in the global climate system of period 65-70 years. Nature 367 , 723726.Google Scholar
Shuman, C. A. Alley, R. B., Anandakrishnan, S. White, J. W, C., Grootes, P. M., and Steams, C. R. (in press). Temperature and accumulation at the Greenland Summit: Comparison of high-resolution isotope profiles and satellite passive microwave brightness temperature trends. Journal of Geophysical Research. CrossRefGoogle Scholar
Steig, E. J. Grootes, P. M., and Stuiver, M. (1994). Seasonal precipitation timing and ice core records. Science 266 , 18851886.Google ScholarPubMed
Stothers, R. B. (1989). Volcanic eruptions and solar activity. Journal of Geophysical Research 94 , 1737117381.Google Scholar
Stuiver, M., and Braziunas, T. F. (1993). Sun, ocean, climate and atmospheric l4CO2: An evaluation of causal and spectral relationships. The Holocene 3 , 289305.Google Scholar
Stuiver, M. Braziunas, T. F. Becker, B., and Kromer, B. (1991). Climatic, solar, oceanic, and geomagnetic influences on Late-glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35 , 124.Google Scholar
Stuiver, M., and Polach, H. A. (1977). Discussion: Reporting of l4C data. Radiocarbon 19 , 355363.Google Scholar
Stuiver, M., and Quay, P. D. (1980). Changes in atmospheric carbon-14 attributed to a variable sun. Science 207 , 1119.Google ScholarPubMed
Stuiver, M. Quay, P. D., and Braziunas, T. F. (in press). Isotope and carbon cycle inferences. In “Proceeding, Global Change Institute The Carbon Cycle, Snowmass, July 1993, UCAR, Boulder.”CrossRefGoogle Scholar
Stuiver, M., and Reimer, P. J. (1993). Extended l4C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35 , 215230.Google Scholar
Van Loon, H., and Labitzke, K. (1988). Association between the 11-year solar cycle, the QBO, and the atmosphere. Part II: Surface and 700 mb in the Northern Hemisphere in winter. Journal of Climate 1 , 905920.Google Scholar
Whillans, I. M., and Grootes, P. M. (1985). Isotope diffusion in cold snow and firn. Journal of Geophysical Research 90 , 39103918.Google Scholar
Wilson, R. C., and Hudson, H. S. (1988). Solar luminosity variations in solar cycle 21. Nature 332 , 810812.Google Scholar
Zielinski, G. A. Mayewski, P. A. Meeker, L. D. Whitlow, S. Twickler, M. S. Morrison, M. Meese, D. A. Gow, A. J., and Alley, R. B, (1994). Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system. Science 264 , 948952.Google ScholarPubMed