Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T16:49:29.642Z Has data issue: false hasContentIssue false

Freshwater pulses in the eastern Arctic Ocean during Saalian and Early Weichselian ice-sheet collapse

Published online by Cambridge University Press:  20 January 2017

Jochen Knies*
Affiliation:
Geological Survey of Norway, N-7491 Trondheim, Norway
Christoph Vogt
Affiliation:
Department of Geosciences, University of Bremen, Klagenfurter Strasse, D-28359 Bremen, Germany
*
*Corresponding author. Fax: +47-73921620E-mail address:[email protected] (J. Knies).

Abstract

Improved multiparameter records from the northern Barents Sea margin show two prominent freshwater pulses into the Arctic Ocean during MIS 5 that significantly disturbed the regional oceanic regime and probably affected global climate. Both pulses are associated with major iceberg-rafted debris (IRD) events, revealing intensive iceberg/sea ice melting. The older meltwater pulse occurred near the MIS 5/6 boundary (∼131,000 yr ago); its ∼2000 year duration and high IRD input accompanied by high illite content suggest a collapse of large-scale Saalian Glaciation in the Arctic Ocean. Movement of this meltwater with the Transpolar Drift current into the Fram Strait probably promoted freshening of Nordic Seas surface water, which may have increased sea-ice formation and significantly reduced deep-water formation. A second pulse of freshwater occurred within MIS 5a (∼77,000 yr ago); its high smectite content and relatively short duration is possibly consistent with sudden discharge of Early Weichselian ice-dammed lakes in northern Siberia as suggested by terrestrial glacial geologic data. The influence of this MIS 5a meltwater pulse has been observed at a number of sites along the Transpolar Drift, through Fram Strait, and into the Nordic Seas; it may well have been a trigger for the North Atlantic cooling event C20.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonow, M., Goldschmidt, P.M., and Erlenkeuser, H., (1997). The climate-sensitive Vesterisbanken area (central Greenland Sea). depositional environment and paleoceanography during the past 250,000 years. Hass, H.C., and Kaminski, M.A. Contributions to Micropaleontology and Paleoceanography of the North Atlantic. Grzybowski Foundation Special Publication, Krakow. 101118.Google Scholar
Bauch, H.A., Erlenkeuser, H., Grootes, P.M., and Jouzel, J., (1996). Implications of stratigraphic and paleoclimatic records of the Last interglaciation from the Nordic seas. Quaternary Research 46, 52605269.Google Scholar
Bauch, H.A., Erlenkeuser, H., Jung, S.J.A., and Thiede, J., (2000). Surface and deep water changes in the subpolar North Atlantic during Termination II and the last interglaciation. Paleoceanography 15, 7684.Google Scholar
Berner, H., (1991). Mechanismen der Sedimentbildung in der Framstrasse, im Arktischen Ozean und in der Norwegischen See, Berichte, Fachbereich Geowissenschaften, Vol. 20. Universität Bremen, Bremen. 167 Google Scholar
Chapman, M.R., and Shackleton, N.J., (1999). Global ice-volume fluctuations, North Atlantic ice-rafting events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27, 795798.Google Scholar
Clark, P.U., Pisias, N.G., Stocker, T.F., and Weaver, A., (2002). The role of the thermohaline circulation in abrupt climate change. Nature 415, 863869.Google Scholar
Eisenhauer, A., Spielhagen, R.F., Frank, M., Hentzschel, G., Mangini, A., Kubik, P.W., Dietrich-Hannen, B., and Billen, T., (1994). 10Be records of sediment cores from high northern latitudes. implications for environmental and climatic changes. Earth and Planetary Science Letters 124, 171184.Google Scholar
Fisher, T.G., Smith, D.G., and Andrews, J.T., (2002). Preboreal oscillation caused by a glacial Lake Agassiz flood. Quaternary Science Review 21, 873878.Google Scholar
Fronval, T., and Jansen, E., (1997). Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions. Paleoceanography 12, 443462.Google Scholar
Gascard, J.-C., Watson, A.J., Messias, M.-J., Olsson, K.A., Johannessen, T., and Simonsen, K., (2002). Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature 416, 525527.CrossRefGoogle ScholarPubMed
Haake, F.W., and Plaumann, U., (1989). Late Pleistocene foraminiferal stratigraphy on the Vøring Plateau, Norwegian Sea. Boreas 18, 343356.Google Scholar
Hebbeln, D., and Wefer, G., (1997). Late Quaternary paleoceanography in the Fram Strait. Paleoceanography 12, 6578.Google Scholar
Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B.J., and Macnab, R., (2000). A new grid of Arctic bathymetry. a significant resource for scientists and mapmakers. Eos 81, 8993., 96 CrossRefGoogle Scholar
Jakobsson, M., Løvlie, R., Arnold, E.M., Backman, J., Polyak, L., Knutsen, J.-O., and Musatov, E., (2001). Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global and Planetary Change 31, 122.Google Scholar
Jakobsson, M., Backman, J., Murray, A., and Løvlie, R., (2003). Optically Stimulated Luminescence dating supports central Arctic Ocean cm-scale sedimentation rates. Geochem. Geophys Geosyst. 4, 2 1016 doi: 10.1029/2002GC000423 CrossRefGoogle Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjornsdottir, A.E., White, J., Jouzel, J., and Fisher, D., (1997). The delta O-18 record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, 2639726410.Google Scholar
Jünger, B., (1994). Deep water renewal in the Greenland Sea during the past 340.000 years. in: GEOMAR Report, Vol. 35, . University of Kiel, pp. 1103.Google Scholar
Kleiber, H.P., and Niessen, F., (2000). Variations of continental discharge pattern in space and time. implications from the Laptev Sea continental margin, Arctic Siberia. International Journal of Earth Sciences 89, 3 605616.Google Scholar
Knies, J., Nowaczyk, N., Müller, C., Vogt, C., and Stein, R., (2000). A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150,000 years. Marine Geology 163, 317344.Google Scholar
Knies, J., Vogt, C., and Stein, R., (1999). Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean. Geo-Marine Letters 18, 195202.Google Scholar
Köhler, S.E.I., and Spielhagen, R.F., (1990). The enigma of isotope stage 5 in the central Fram Strait. Bleil, U., and Thiede, J. Geological History of the Polar Oceans. Arctic versus Antarctic, NATO ASI Series C. Kluwer Academic, Dordrecht. 489497.Google Scholar
Mangerud, J., Astakhov, V., Jakobsson, M., and Svendssen, J.I., (2001). Huge ice-age lakes in Russia. Journal of Quaternary Science 16, 773777.Google Scholar
Mangerud, J., Astakhov, V.I., Murray, A., and Svendsen, J.I., (2001). The chronology of a large ice-dammed lake and the Barents–Kara Ice Sheet advances, Northern Russia. Global and Planetary Change 31, 319334.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., and Shackleton, N.J., (1987). Age dating and the orbital theory of ice ages. development of a high-resolution 0 to 300.000 year chronostratigraphy. Quaternary Research 27, 129.Google Scholar
Matthiessen, J., and Knies, J., (2001). Dinoflagellate cyst evidence for warm interglacial conditions at the northern Barents Sea margin during marine oxygen isotope stage 5. Journal of Quaternary Science 16, 727737.Google Scholar
Matthiessen, J., Knies, J., Nowaczyk, N.R., and Stein, R., (2001). Late Quaternary dinoflagellate cyst stratigraphy at the Eurasian continental margin, Arctic Ocean. Indications for Atlantic water inflow in the past 150,000 years. Global and Planetary Change 31, 6586.Google Scholar
McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., and Higgins, S., (1994). High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.Google Scholar
Nørgaard-Pedersen, N., Spielhagen, R.F., Thiede, J., and Kassens, H., (1998). Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography 13, 193204.Google Scholar
Nowaczyk, N.R., and Knies, J., (2000). Magnetostratigraphic results from the eastern Arctic Ocean. AMS14C ages and relative paleointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions. Geophysical Journal International 140, 185197.CrossRefGoogle Scholar
Pfirman, S.L., Colony, R., Nürnberg, D., Eicken, H., and Rigor, I., (1997). Reconstructing the origin and trajectory of drifting Arctic sea ice. Journal of Geophysical Research 102, 1257512586.Google Scholar
Polyak, L., Edwards, M.H., Coakley, B.J., and Jakobsson, M., (2001). Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453456.Google Scholar
Rahmstorf, S., and Ganopolski, A., (1999). Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change 43, 353367.Google Scholar
Sarnthein, M., Jansen, E., Weinelt, M., Arnhold, M., Duplessy, J.C., Erlenkeuser, H., Flatøy, A., Johannessen, G., Jung, S., Koç, N., Labeyrie, L., Maslin, M., Pflaumann, U., and Schulz, H., (1995). Variations in Atlantic surface ocean paleoceanography, 50–80°N. a time-slice record of the last 30,000 years. Paleoceanography 10, 10631094.Google Scholar
Shackleton, N.J., Chapman, M., Sánchez-Goñi, M.F., Pailler, D., and Lancelot, Y., (2002). The classic Marine Isotope Substage 5e. Quaternary Research 58, 1416.Google Scholar
Siegert, M.J., Dowdeswell, J.A., Hald, M., and Svendsen, J.-I., (2001). Modelling the Eurasian Ice Sheet through a full (Weichselian) glacial cycle. Global and Planetary Change 31, 367386.CrossRefGoogle Scholar
Spielhagen, R., (2001). Enigmatic Arctic ice sheets. Nature 410, 427428.Google Scholar
Spielhagen, R.F., Eisenhauer, A., Frank, M., Frederichs, T., Kassens, H., Mangini, A., Nowaczyk, N.R., Nørgaard-Pedersen, N., Schäper, S., Stein, R., Thiede, J., Tiedemann, R., Wahsner, M., Bonani, G., and Kubik, P.W., (1997). Arctic Ocean evidence for Late Quaternary innitiation of northern Eurasian ice sheet. Geology 25, 769864.Google Scholar
Spielhagen, R.F., and Erlenkeuser, H., (1994). Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments. reflection of the low salinity surface water layer. Marine Geology 119, 227250.Google Scholar
Spielhagen, R. F., Nørgaard-Pedersen, N., Erlenkeuser, H., Grootes, P. M., and Heinemeier, J. (1998). A meltwater event in the Arctic Ocean before the Younger Dryas. in: 6th International Conference on Paleoceanography, . Lisbon., p. 213 Google Scholar
Streeter, S.S., Belanger, P.E., Kellogg, T.B., and Duplessy, J.C., (1982). Late Pleistocene paleo-oceanography of the Norwegian–Greenland Sea. Benthic foraminiferal evidence. Quaternary Research 18, 7990.Google Scholar
Struck, U., (1997). Paleoecology of benthic foraminifera in the Norwegian–Greenland Sea during the past 500 ka. Hass, H.C., and Kaminski, M.A. Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic. Special Publications, Grzybowski Foundation, Krakow. 5182.Google Scholar
13 others Svendsen, J.I., (1999). Maximum extent of the Eurasian ice-sheets in the Barents and Kara Sea region during the Weichselian. Boreas 1, 234242.CrossRefGoogle Scholar
Volkmann, R., and Mensch, M., (2001). Stable isotope composition (δ18O, δ13C) of living planktic foraminifers in the outer Laptev Sea and the Fram Strait. Marine Micropaleontology 42, 163188.Google Scholar
Wahsner, M., Müller, C., Stein, R., Ivanov, G., Levitan, M., Shelekhova, E., and Tarasov, G., (1999). Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways—a synthesis. Boreas 28, 215233.Google Scholar
Wollenburg, J.E., Kuhnt, W., and Mackensen, A., (2001). Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr. the benthic foraminiferal record. Paleoceanography 16, 6577.CrossRefGoogle Scholar