Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T18:58:01.099Z Has data issue: false hasContentIssue false

Forest–savanna–morichal dynamics in relation to fire and human occupation in the southern Gran Sabana (SE Venezuela) during the last millennia

Published online by Cambridge University Press:  20 January 2017

Encarni Montoya*
Affiliation:
Palynology and Palaeoecology Lab, Botanical Institute of Barcelona (CSIC-ICUB), Passeig del Migdia s/n, 08038 Barcelona, Spain Dep. of Animal Biology, Plant Biology and Ecology, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
Valentí Rull
Affiliation:
Palynology and Palaeoecology Lab, Botanical Institute of Barcelona (CSIC-ICUB), Passeig del Migdia s/n, 08038 Barcelona, Spain
Nathan D. Stansell
Affiliation:
Byrd Polar Research Center, The Ohio State University, Scott Hall Room 108, 1090 Carmack Road, Columbus, OH 43210, USA
Mark B. Abbott
Affiliation:
Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
Sandra Nogué
Affiliation:
Palynology and Palaeoecology Lab, Botanical Institute of Barcelona (CSIC-ICUB), Passeig del Migdia s/n, 08038 Barcelona, Spain Long Term Ecology Lab. Department of Zoology, South Parks Road, OX1 3PS, UK
Broxton W. Bird
Affiliation:
Byrd Polar Research Center, The Ohio State University, Scott Hall Room 108, 1090 Carmack Road, Columbus, OH 43210, USA
Wilmer A. Díaz
Affiliation:
CIEG-UNEG, Puerto Ordaz, Estado Bolivar, Venezuela
*
Corresponding author at: Palynology and Palaeoecology Lab, Botanical Institute of Barcelona (CSIC-ICUB), Passeig del Migdia s/n, 08038 Barcelona, Spain. E-mail address:[email protected] (E. Montoya).

Abstract

The southern Gran Sabana (SE Venezuela) holds a particular type of neotropical savanna characterized by the local occurrence of morichales (Mauritia palm swamps), in a climate apparently more suitable for rain forests. We present a paleoecological analysis of the last millennia of Lake Chonita (4°39′N–61°0′W, 884 m elevation), based on biological and physico-chemical proxies. Savannas dominated the region during the last millennia, but a significant vegetation replacement occurred in recent times. The site was covered by a treeless savanna with nearby rainforests from 3640 to 2180 cal yr BP. Water levels were higher than today until about 2800 cal yr BP. Forests retreated since about 2180 cal yr BP onwards, likely influenced by a higher fire incidence that facilitated a dramatic expansion of morichales. The simultaneous appearance of charcoal particles and Mauritia pollen around 2000 cal yr BP supports the potential pyrophilous nature of this palm and the importance of fire for its recent expansion. The whole picture suggests human settlements similar to today – in which fire is an essential element – since around 2000 yr ago. Therefore, present-day southern Gran Sabana landscapes seem to have been the result of the synergy between biogeographical, climatic and anthropogenic factors, mostly fire.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., and Stafford, T.W. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45, (1996). 300311.CrossRefGoogle Scholar
Behling, H., and Hooghiemstra, H. Late Quaternary palaeoecology and palaeoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeography, Palaeoclimatology, Palaeoecology 139, (1998). 251267.Google Scholar
Behling, H., and Hooghiemstra, H. Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. Journal of Paleolimnology 21, (1999). 461476.Google Scholar
Behling, H., and Hooghiemstra, H. Holocene Amazon rainforest–savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15, (2000). 687695.Google Scholar
Behling, H., and Hooghiemstra, H. Neotropical savanna environments in space and time: Late Quaternary interhemispheric comparisons. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, San Diego. 307323.Google Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. The New Phytologist 132, (1996). 155170.Google Scholar
Berrío, J.C., Hooghiemstra, H., Behling, H., and van der Borg, K. Late Holocene history of savanna gallery forest from Carimagua area, Colombia. Review of Palaeobotany and Palynology 111, (2000). 295308.CrossRefGoogle ScholarPubMed
Berrío, J.C., Hooghiemstra, H., Behling, H., Botero, P., and van der Borg, K. Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. The Holocene 12, (2002). 3548.Google Scholar
Blaauw, M. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, (2010). 512518.Google Scholar
Bradbury, J.P., Leyden, B., Salgado-Labouriau, M.L., Lewis, W.M., Schubert, C., Benford, M.W., Frey, D.G., Whitehead, D.R., and Weibezahn, F.H. Late Quaternary environmental history of Lake Valencia, Venezuela. Science 214, (1981). 12991305.Google Scholar
Briceño, H.O., and Schubert, C. Geomorphology of the Gran Sabana, Guayana Shield. Geomorphology 3, (1990). 125141.CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., de Toledo, M.B., Listopad, C., Gosling, W.D., Williams, C., De Oliveira, P.E., and Krisel, C. Holocene fire and occupation in Amazonia: records from two lake districts. Philosophical Transactions of the Royal Society B: Biological Sciences 362, (2007). 209218.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., and Moreno, J.E. Amazon Pollen Manual and Atlas. (1999). Harwood Academic Publishers, Amsterdam.Google Scholar
Colson, A.B. Routes of knowledge, an aspect of regional integration in the circum-Roraima area of the Guayana highlands. Antropológica 63, 64 (1985). 103149.Google Scholar
Curtis, J.H., Brenner, M., and Hodell, D.A. Climate change in the lake Valencia basin, Venezuela, 12600 yr BP to present. The Holocene 9, (1999). 609619.Google Scholar
Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, (1974). 242248.Google Scholar
Dezzeo, N., Chacón, N., Sanoja, E., and Picón, G. Changes in soil properties and vegetation characteristics along a forest–savanna gradient in southern Venezuela. Forest Ecology and Management 200, (2004). 183193.Google Scholar
Eden, M.J. Paleoclimatic influences and the development of savanna in southern Venezuela. Journal of Biogeography 1, (1974). 95109.Google Scholar
Eva, H.D., Belward, A.S., de Miranda, E., di Bella, C.M., Gond, V., Huber, O., Jones, S., Sgrenzaroli, M., and Fritz, S. A land cover map of SouthAmerica. Global Ecology and Biogeography 10, (2004). 731744.Google Scholar
Fölster, H. Forest–savanna dynamics and desertification processes in the Gran Sabana. Interciencia 11, (1986). 311316.Google Scholar
Fölster, H., Dezzeo, N., and Priess, J.A. Soil–vegetation relationship in base-deficient premontane moist forest–savanna mosaics of the Venezuelan Guayana. Geoderma 104, (2001). 95113.Google Scholar
Gassón, R.A. Orinoquia: the archaeology of the Orinoco river basin. Journal of World Prehistory 16, (2002). 237311.Google Scholar
Gomez-Beloz, A. Plant use knowledge of the Winikina Warao: the case for questionnaires in ethnobotany. Economic Botany 56, (2002). 231241.Google Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., and Killeen, T.J. Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, (2009). 7085.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, (2001). 13041308.Google Scholar
Heckenberger, M., and Neves, E.G. Amazonian archaeology. Annual Review of Anthropology 38, (2009). 251266.Google Scholar
Henderson, A., Galeano, G., and Bernal, R. Field Guide to the Palms of the Americas. (1995). Princeton University Press, New Jersey.Google Scholar
Hernández, L. Fisionomía y estructura de bosques submesotérmicos y mesotérmicos. Ecología de la altiplanicie de la Gran Sabana (Guayana Venezolana) II. Estructura, diversidad, crecimiento y adaptación en bosques de las subcuencas de los ríos Yuruaní y Alto Kukenán. Hernández, L. Scientia Guayanae Vol. 9, (1999). Ediciones Tamandúa, Caracas. 534.Google Scholar
Herrera, L.F., and Urrego, L.E. Atlas de polen de plantas útiles y cultivadas de la Amazonia colombiana. (1996). Tropenbos Colombia, Colombia.Google Scholar
Hooghiemstra, H. Vegetational and climatic history of the High Plain of Bogotá, Colombia: a continuous record of the last 3.5 million years. van der Hammen, T. The Quaternary of Colombia Vol. 10, (1984). J. Cramer, Amsterdam.Google Scholar
Huber, O. La vegetación de la cuenca del Río Caroní. Interciencia 11, (1986). 301310.Google Scholar
Huber, O. Neotropical savannas: their flora and vegetation. Trends in Ecology & Evolution 2, (1987). 6771.Google Scholar
Huber, O. Shrublands of the Venezuelan Guayana. Holm-Nielsen, L.B., Nielsen, I.C., and Balslev, H. Tropical Forests. (1989). Academic Press, London. 271285.Google Scholar
Huber, O. La vegetación: Arbustales. Ecología de la Altiplanicie de la Gran Sabana (Guayana Venezolana) I. Investigaciones sobre la dinámica bosque–sabana en el sector SE: subcuencas de los ríos Yuruaní, Arabopó y Alto Kukenán. Dezzeo, N. Scientia Guayanae Vol. 4, (1994). Ediciones Tamandúa, Caracas. 95106.Google Scholar
Huber, O. Geographical and physical features. Flora of the Venezuelan Guayana. Steyermark, J.A., Berry, P.E., Holst, B.K. Introduction Vol. 1, (1995). Missouri Botanical Garden Press, Missouri. 162.Google Scholar
Huber, O. Vegetation. Flora of the Venezuelan Guayana. Steyermark, J.A., Berry, P.E., Holst, B.K. Introduction Vol. 1, (1995). Missouri Botanical Garden Press, Missouri. 97160.Google Scholar
Huber, O. Herbaceous ecosystems on the Guayana Shield, a regional overview. Journal of Biogeography 33, (2006). 464475.Google Scholar
Huber, O., and Febres, G. Guía ecológica de la Gran Sabana. (2000). The Nature Conservancy, Caracas.Google Scholar
Kingsbury, N.D., (1999). Increasing pressure on decreasing resources: a case study of Pemón Amerindian shfting cultivation in the Gran Sabana, Venezuela. PhD Thesis, Toronto, Canada.Google Scholar
Kingsbury, N.D. Impacts of land use and cultural change in a fragile environment: indigenous acculturation and deforestation in Kavanayén, Gran Sabana, Venezuela. Interciencia 26, (2001). 327336.Google Scholar
Leal, A., Rull, V., and Bilbao, B. Cambios climáticos y de vegetación durante el Holoceno en los Llanos Orientales de Venezuela: implicaciones sobre la biogeografía de Mauritia flexuosa L.f. (Arecaceae). VIII Congreso Latinoamericano de Botánica, Cartagena (Colombia). (2002). Google Scholar
Leal, A., Rull, V., and Bilbao, B. Cambios climáticos durante el Holoceno en los Llanos de Venezuela: implicaciones sobre la biogeografía de Mauritia flexuosa L.f. (Arecaceae). XV Congreso Venezolano de Botánica, Mérida (Venezuela). (2003). Google Scholar
Leyden, B.W. Late Quaternary aridity and Holocene moisture fluctuations in the Lake Valencia Basin, Venezuela. Ecology 66, (1985). 12791295.Google Scholar
Marchant, R., Almeida, L., Behling, H., Berrío, J.C., Bush, M., Cleef, A., Duivenvoorden, J., Kappelle, M., De Oliveira, P., Teixeira, A., Lozano, S., Hooghiemstra, H., Ledru, M.P., Ludlow-Wiechers, B., Markgraf, V., Mancini, V., Páez, M., Prieto, A., Rangel, O., and Salgado-Labouriau, M.L. Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Review of Palaeobotany and Palynology 121, (2002). 175.Google Scholar
Marchant, R., and Hooghiemstra, H. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Science Reviews 66, (2004). 217260.Google Scholar
Medina, J., Croes, G., and Piña, I. Evaluación de políticas públicas del pueblo Pemón: componentes socioeconómico y ambiental. D.d.A.I. Ministerio de Educación y Deportes. (2004). The Nature Conservancy, Caracas.Google Scholar
Montoya, E., Rull, V., Nogué, S., and Díaz, W.A. Paleoecología del Holoceno en la Gran Sabana, SE Venezuela: Análisis preliminar de polen y microcarbones en la Laguna Encantada. Collectanea Botanica 28, (2009). 7589.Google Scholar
Montoya, E., Rull, V., and van Geel, B. Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 297, (2010). 169183.Google Scholar
Montoya, E., Rull, V., Stansell, N.D., Bird, B.W., Nogué, S., Vegas-Vilarrúbia, T., Abbott, M.B., and Díaz, W.A. Vegetation changes in the Neotropical Gran Sabana (Venezuela) around the Younger Dryas Chron. Journal of Quaternary Science 26, (2011). 207218.Google Scholar
Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V., and Bradley, R.S. Solar modulation of Little Ice Age climate in the tropical Andes. Proceedings of the National Academy of Sciences 103, (2006). 89378942.Google Scholar
Ponce, M.E. Patrones de caída de frutos en Mauritia flexuosa L.F. y fauna involucrada en los procesos de remoción de semillas. Acta Botanica Venezuelica 25, (2002). 119142.Google Scholar
Ponce, M.E., Brandin, J., Ponce, M.A., and González, V. Germinación y establecimiento de plántulas de Mauritia flexuosa L.f. (Arecaceae) en los Llanos Sur–Orientales del Estado Guárico, Venezuela. Acta Botanica Venezuelica 22, (1999). 167183.Google Scholar
Rodríguez, I. Conocimiento indígena vs científico: el conflicto por el uso del fuego en el Parque Nacional de Canaima, Venezuela. Interciencia 29, (2004). 121129.Google Scholar
Rodríguez, I. Pemon perspectives of fire management in Canaima National Park, Southeastern Venezuela. Human Ecology 35, (2007). 331343.Google Scholar
Roubik, D.W., and Moreno, J.E. Pollen and Spores of Barro Colorado Island. (1991). Missouri Botanical Garden, Missouri.Google Scholar
Rostain, S. The archaeology of the Guianas: an overview. Silverman, H., and Isbell, W.H. Handbook of South American Archaeology. (2008). Springer, New York. 279302.Google Scholar
Rull, V. A note on pollen counting in palaeoecology. Pollen et Spores 29, (1987). 471480.Google Scholar
Rull, V. Successional patterns of the Gran Sabana (southeastern Venezuela) vegetation during the last 5000 years, and its responses to climatic fluctuations and fire. Journal of Biogeography 19, (1992). 329338.Google Scholar
Rull, V. Contribución a la morfología polínica de las Urticales de los Andes venezolanos. Acta Botanica Venezuelica 21, (1998). 4373.Google Scholar
Rull, V. Biogeographical and evolutionary considerations on Mauritia (Arecaceae), based on palynological evidence. Review of Palaeobotany and Palynology 100, (1998). 109122.CrossRefGoogle Scholar
Rull, V. A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. Journal of Quaternary Science 14, (1999). 137152.3.0.CO;2-3>CrossRefGoogle Scholar
Rull, V. An illustrated key for the identification of pollen from Pantepui and the Gran Sabana (eastern Venezuelan Guayana). Palynology 27, (2003). 95129.Google Scholar
Rull, V. Holocene global warming and the origin of the Neotropical Gran Sabana in the Venezuelan Guayana. Journal of Biogeography 34, (2007). 279288.Google Scholar
Rull, V., Abbott, M.B., Vegas-Vilarrúbia, T., Bezada, M., Montoya, E., Nogué, S., and González, C. Paleoenvironmental trends in Venezuela during the last glacial cycle. Sánchez-Villagra, M.R., Aguilera, O., and Carlini, A. Urumaco and Venezuelan Palaeontology — The Fossil Record of the Northern Neotropics. (2010). Indiana University Press, Indiana. 5283.Google Scholar
Rull, V., Stansell, N.D., Montoya, E., Bezada, M., and Abbott, M.B. Palynological signal of the Younger Dryas in the tropical Venezuelan Andes. Quaternary Science Reviews 29, (2010). 30453056.Google Scholar
Saldarriaga, J.G., and Webs, D.C. Holcelene fires in the Northern Amamzon basin. Quaternary Research 26, (1986). 358366.Google Scholar
Thomas, D.J. Order Without Government: The Society of the Pemons Indians of Venezuela. (1982). University of Illinois Press, Illinois.Google Scholar
Tryon, A.F., and Lugardon, B. Spores of the Pteridophyta. Surface, Wall Structure, and Diversity Based on Electron Microscope Studies. (1991). Springer-Verlag, New York.Google Scholar
Wille, M., Hooghiemstra, H., van Geel, B., Behling, H., de Jong, A., and van der Borg, K. Submillenium-scale migrations of the rainforest–savanna boundary in Colombia: C-14 wiggle-matching and pollen analysis of core Las Margaritas. Palaeogeography, Palaeoclimatology, Palaeoecology 193, (2003). 201223.Google Scholar
Wright, H.E., Mann, D.H., and Glaser, P.H. Piston corers for peat and lake sediments. Ecology 65, (1984). 657659.Google Scholar
Wymstra, T.A., and van der Hammen, T. Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen 38, (1966). 7190.Google Scholar