Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T02:55:58.826Z Has data issue: false hasContentIssue false

Forest stability during the early and late Holocene in the igapó floodplains of the Rio Negro, northwestern Brazil

Published online by Cambridge University Press:  21 December 2017

Paula A. Rodríguez-Zorro*
Affiliation:
Department of Palynology and Climate Dynamics, University of Goettingen, Goettingen, Germany
Bruno Turcq
Affiliation:
IRD, Sorbonne Université, CNRS-MNHN, Paris, France Universidad Peruana Cayetano Heredia, Lima, Perú
Renato C. Cordeiro
Affiliation:
Geochemistry Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
Luciane S. Moreira
Affiliation:
Geochemistry Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
Renata L. Costa
Affiliation:
Geochemistry Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
Crystal H. McMichael
Affiliation:
Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
Hermann Behling
Affiliation:
Department of Palynology and Climate Dynamics, University of Goettingen, Goettingen, Germany
*
*Corresponding author at: Department of Palynology and Climate Dynamics, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany. E-mail: [email protected] (P.A. Rodríguez-Zorro).

Abstract

Located at the northwestern part of the Amazon basin, Rio Negro is the largest black-water river in the world and is one of the poorest studied regions of the Amazon lowlands. In the middle-upper part of the Rio Negro were retrieved sediment cores form Lake Acarabixi, which were analyzed using pollen, spores, charcoal, and geochemistry. The aim of this study was to detect the influences from humans and river dynamics on the vegetation history in the region. Two main periods of vegetation and river dynamics were detected. From 10,840 to 8240 cal yr BP, the river had a direct influence into the lake. The lake had a regional input of charcoal particles, which reflected the effect of the dry Holocene period in the basin. Furthermore, highland taxa such as Hedyosmum and Myrsine were found at that time along with igapó forest species that are characteristic to tolerate extended flooding like Eschweilera, Macrolobium, Myrtaceae, Swartzia, and Astrocaryum. During the late Holocene (1600 to 650 cal yr BP), more lacustrine phases were observed. There were no drastic changes in vegetation but the presence of pioneer species like Vismia and Cecropia, along with the signal of fires, which pointed to human disturbances.

Type
Tribute to Daniel Livingstone and Paul Colinvaux
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Absy, M.L., 1979. A Palynological Study of Holocene Sediments in the Amazon Basin. PhD dissertation, University of Amsterdam, Amsterdam.Google Scholar
Apaéstegui, J., Cruz, F.W., Sifeddine, A., Vuille, M., Espinoza, J.C., Guyot, J.L., Khofri, M., et al. 2014. Hydroclimate variability of the northwestern Amazon Basin near the Andean foothills of Peru related to the South American Monsoon System during the last 1600 years. Climate of the Past 10: 19671981.Google Scholar
Aragão, L.E.O., 2012. The rainforest’s water pump. Nature 489: 217218.Google Scholar
Athiê-Souza, S.M., Melo, A.L., Silva, M.J., Oliveira, L.S.D., Sales, M.F., 2015. Gradyana (Euphorbiaceae): a new genus from northeastern Brazil. Systematic Botany 40: 527533.Google Scholar
Behling, H., Hooghiemstra, H., 2000. Holocene Amazon rainforest-savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15: 687695.Google Scholar
Behling, H., Keim, G., Irion, G., Junk, W., Mello, J.N., 2001. Holocene environmental changes in the central Amazon basin inferred from Lago Calado (Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology 173: 87101.Google Scholar
Bennett, K.D., 1996. Determination of the number of zones in biostratigraphical sequences. New Phytologist 132: 155170.CrossRefGoogle Scholar
Bennett, K.D., 2009. psimpoll 4.27: C program for plotting pollen diagrams and analyzing pollen data (accessed May 2016). Department of Archaeology and Palaeoecology, Queen’s University of Belfast, Belfast, UK. http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html.Google Scholar
Berrío, J.C., Hooghiemstra, H., Behling, H., Botero, P., Van der Bog, K., 2002. Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12: 3548.Google Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512518.Google Scholar
Bush, M.B., Colinvaux, P.A., 1988. A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76: 141154.Google Scholar
Bush, M.B., De Oliveira, P.E., Colinvaux, P.A., Miller, M.C., Moreno, J.E., 2004. Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology 214: 359393.Google Scholar
Bush, M.B., Dolores, R.P., Colinvaux, P.A., 1989. A 6,000 year history of Amazonian maize cultivation. Nature 340: 303305.Google Scholar
Bush, M.B., McMichael, C.H., Piperno, D.R., Silman, M.R., Barlow, J., Peres, C.A., Power, M., Palace, M.W., 2015. Anthropogenic influence on Amazonian forests in pre-history: an ecological perspective. Journal of Biogeography 42: 22772288.Google Scholar
Bush, M.B., Silman, M.R., Toledo, M.B., Listopad, C., Gosling, W.D., Williams, C., De Oliveira, P.E., Krisel, C., 2007. Holocene fire and occupation in Amazonia: records from two lake districts. Philosophical Transactions of the Royal Society, B: Biological Sciences 362: 209218.Google Scholar
Carneiro-Filho, A., Schwartz, D., Tatumi, S.H., Rosique, T., 2002. Amazonian paleodunes provide evidence for drier climate phases during the late Pleistocene-Holocene. Quaternary Research 58: 205209.Google Scholar
Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d’Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S., 2013. Climate change patterns in Amazonia and biodiversity. Nature. Communications 4: 1411. http://dx.doi.org/10.1038/ncomms2415.Google Scholar
Clark, K., Uhl, C., 1987. Farming, fishing, and fire in the history of the upper Río Negro region of Venezuela. Human Ecology 15: 126.Google Scholar
Colinvaux, P., De Oliveira, P.E., Moreno, J.E., 1999. Amazon Pollen Manual and Atlas. Harwood Academic, Amsterdam.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274: 8588.Google Scholar
Cordeiro, R.C., Turcq, B., Moreira, L.S., Rodrigues, R.A.R., Simões Filho, F.F.L., Martins, G.S., Santos, A.B., Barbosa, M., Conceição, M.C.G., Rodrigues, R.C., 2014. Palaeofires in Amazon: interplay between land use change and palaeoclimatic events. Palaeogeography, Palaeoclimatology, Palaeoecology 415: 137151.Google Scholar
Cordeiro, R.C., Turcq, B., Sifeddine, A., Lacerda, L.D., Silva Filho, E.V., Gueiros, B., Potty, Y.P., Santelli, R.E., Pádua, E.O., Patchinelam, S.R., 2011. Biogeochemical indicators of environmental changes from 50 Ka to 10 Ka in a humid region of the Brazilian Amazon. Palaeogeography, Palaeoclimatology, Palaeoecology 299: 426436.Google Scholar
Correa, A.M.S., Barros, M.A.V.C., Silvestre-Capelato, M.S.F., Pregun, M.A., Raso, P.G., Cordeiro, I., 2010. Flora polínica da Reserva do Parque Estadual das Fontes do Ipiranga (São Paulo, Brasil). Hoehnea 37: 5369.Google Scholar
Correa-Metrio, A., Dechnik, Y., Lozano-García, S., Caballero, M., 2014. Detrended correspondence analysis: a useful tool to quantify ecological changes from fossil data sets. Boletín de la Sociedad Geológica Mexicana 66: 135143.Google Scholar
Correa-Metrio, A., Urrego, D.H., Cabrera, K.R., Bush, M.B., 2011. PaleoMAS: paleoecological analysis. R package version 2.0-1 (accessed February 3, 2017). https://CRAN.R-project.org/package=paleoMAS.Google Scholar
D’Apolito, C., Absy, M.L., Latrubesse, E.M., 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quaternary Science Reviews 76: 140155.Google Scholar
D’Apolito, C., Absy, M.L., Latrubesse, E.M., 2017. The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial. Quaternary Science Reviews 169: 112.Google Scholar
da Silva Meneses, M.E.N., da Costa, M.L., Behling, H., 2013. Late Holocene vegetation and fire dynamics from a savanna-forest ecotone in Roraima State, northern Brazilian Amazon. Journal of South American Earth Sciences 42: 1726.Google Scholar
Espinoza, J.C., Guyot, J.L., Ronchail, J., Cochonneau, G., Filizola, N., Fraizy, P., Labat, D., Oliveira, E., Ordoñez, J.J., Vauchel, P., 2009. Contrasting regional discharge evolutions in the Amazon basin (1974–2004). Journal of Hydrology 375: 297311.Google Scholar
Esser, H.J., 2012. The tribe Hippomaneae (Euphorbiaceae) in Brazil. Rodriguésia 63: 209225.CrossRefGoogle Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Wiley, New York.Google Scholar
Ferreira, L.V., Stohlgren, T.J., 1999. Effects of river level fluctuation on plant species richness, diversity, and distribution in a floodplain forest in central Amazonia. Oecologia 120: 582587.Google Scholar
Flores, B.M., Fagoaga, R., Nelson, B.W., Holmgren, M., 2016. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology 53: 15971603.Google Scholar
Flores, B.M., Piedade, M.T.F., Nelson, B.W., 2014. Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology and Diversity 7: 319327.Google Scholar
Gentry, A.H., 1996. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru) with Supplementary Notes on Herbaceous Taxa. University of Chicago Press, Chicago.Google Scholar
Goulding, M.R., Barthem, R., Ferreira, E., 2003. The Smithsonian Atlas of the Amazon. Smithsonian Institution Press, Washington, DC.Google Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computers and Geosciences 13: 1335.CrossRefGoogle Scholar
Grimm, E.C., 2015. Tilia/TGView 2.0.41. Illinois State Museum, Research and Collections Center, Springfield, IL.Google Scholar
Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427473.Google Scholar
Instituto Socioambiental (ISA). 2012. Manejo pesqueiro no médio rio Negro: Santa Isabel do Rio Negro- Recomendações do processo participativo de oficinas para o ordenamento das atividades pesqueiras nos municípios de Barcelos e Santa Isabel do Rio Negro, Amazonas. Serie Pescarias no Rio Negro Vol. 2. ISA, São Paulo, Brazil.Google Scholar
Irion, G., Kalliola, R., 2010. Long-term landscape development processes in Amazonia. In Hoorn, C., Wesselingh, F.P. (Eds.), Amazonia: Landscape and Species Evolution—A Look into the Past. Wiley-Blackwell, Oxford, UK, pp. 185197.Google Scholar
Jiménez, L.C., Bogotá, R.G., Rangel, Ch., J.O., 2008. Atlas palinológico de la Amazonia Colombiana – las familias más ricas en especies. In Rangel Ch., J.O. (Ed.), Colombia diversidad biótica VII: vegetación, palinología y paleoecología de la amazonía Colombiana. National University of Colombia, Natural Sciences Institute, Bogotá, Columbia, pp. 217412.Google Scholar
Junk, W.J., Piedade, M.T.F., 2010. An introduction to South American wetland forests: distribution, definitions and general characterization. In Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., Parolin, P. (Eds.), Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management. Springer, New York, pp. 325.Google Scholar
Junk, W.J., Piedade, M.T.F., Schöngart, J., Cohn-Haft, M., Adeney, J.M., Wittmann, F., 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31: 623640.Google Scholar
Junk, W.J., Piedade, M.T.F., Wittmann, F., Schöngart, J., Parolin, P., 2010. Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management. Springer, Dordrecht, the Netherlands.Google Scholar
Kubitzki, K., 1989. The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution 162: 285304.Google Scholar
Latrubesse, E.M., Franzinelli, E., 1998. Late quaternary alluvial sedimentation in the Upper Rio Negro basin, Amazonia, Brazil: Palaeohydrological Implications. In Benito, G., Baker ,V.R., Gregory, K.J. (Eds.), Palaeohydrology and Environmental Change. John Wiley and Sons, Chichester, UK, pp. 259271.Google Scholar
Latrubesse, E.M., Franzinelli, E., 2005. The late Quaternary evolution of the Negro River, Amazon, Brazil: implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70: 372397.Google Scholar
Ledru, M.P., 2001. Late Holocene rainforest disturbance in French Guiana. Review of Palaeobotany and Palynology 115: 161176.Google Scholar
Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Davila, E., Andrade, A.C.S., Brienen, R.J.W., et al. 2016. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America 113: 793797.Google Scholar
Marchant, R., Almeida, L., Behling, H., Berrio, J.C., Bush, M., Cleef, A., Duivenvoorden, J., et al. 2002. Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Review of Palaeobotany and Palynology 121: 175.Google Scholar
Marengo, J.A., Tomasella, J., Soares, W.R., Alves, L.M., Nobre, C.A., 2012. Extreme climatic events in the Amazon basin: climatological and hydrological context of recent floods. Theoretical and Applied Climatology 107: 7385.Google Scholar
Martinelli, L.A., Victoria, R.L., Camargo, P.B., Piccolo, M.C., Mertes, L., Richey, J.E., Devol, A.H., Forsberg, B.R., 2003. Inland variability of carbon–nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrological Processes 17: 14191430.Google Scholar
Matthias, I., Semmler, M.S.S., Giesecke, T., 2015. Pollen diversity captures landscape structure and diversity. Journal of Ecology 103: 880890.Google Scholar
McMichael, C.H., Palace, M.W., Bush, M.B., Braswell, B., Hagen, S., Neves, E.G., Silman, M.R., Tamanaha, E.K., Czarnecki, C., 2014. Predicting pre-Columbian anthropogenic soils in Amazonia. Proceedings of the Royal Society, B: Biological Sciences 281: 20132475. http://dx.doi.org/10.1098/rspb.2013.2475.Google Scholar
Mesquita, R.C.G., Massoca, P.E.S., Jakovac, C.C., Bentos, T.V., Williamson, G.B., 2015. Amazon rain forest succession: stochasticity or land-use legacy? BioScience 65: 849861.Google Scholar
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34: 261289.Google Scholar
Montero, J.C., 2012. Floristic Variation of the Igapó Forests along the Negro River, Central Amazonia. PhD dissertation, University of Freiburg, Freiburg, Germany.CrossRefGoogle Scholar
Montero, J.C., Latrubesse, E.M., 2013. The igapó of the Negro River in central Amazonia: linking late-successional inundation forest with fluvial geomorphology. Journal of South American Earth Sciences 46: 137149.Google Scholar
Montero, J.C., Piedade, M.T.F., Wittmann, F., 2012. Floristic variation across 600 km of inundation forests (igapó) along the Negro River, Central Amazonia. Hydrobiologia 729: 229246.CrossRefGoogle Scholar
Moran, E.F., 1995. Rich and poor ecosystems of Amazonia: an approach to management the fragile tropics of Latin America. In Nishizawa, T., Uitto, J.I. (Eds.), The Fragile Tropics of Latin America: Sustainable Management of Changing Environments. United Nations University, Tokyo, pp. 4567.Google Scholar
Mosblech, N.A.S., Bush, M.B., Gosling, W.D., Thomas, L., van Calsteren, P., Correa-Metrio, A., Valencia, B.G., Curtis, J., van Woesik, R., 2012. North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience 5: 817820.CrossRefGoogle Scholar
Neves, E.G., 2013. Was agriculture a key productive activity in pre-colonial Amazonia? The stable productive basis for social equality in the central Amazon. In Brondízio, E.S., Moran, E.F. (Eds.), Human-Environment Interactions Vol 1. Springer, Dordrecht, the Netherlands, pp. 371388.Google Scholar
Neves, E.G., Petersen, J., 2006. Political economy and pre-Columbian landscape transformation in Central Amazonia. In Balée, W., Erickson, C.L. (Eds.), Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands. Columbia University Press, New York, pp. 279310.Google Scholar
Neves, E.G., Petersen, J.B., Bartone, R.N., Heckenberger, M.J., 2004. The timing of terra preta formation in the central Amazon: archaeological data from three sites. In Glaser, B., Woods, W.I. (Eds.), Amazonian Dark Earths: Explorations in Space and Time. Springer, Berlin, pp. 125133.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2015. vegan: Community Ecology Package. R package version 2.3-0 (accessed February 3, 2017). http://CRAN.R-project.org/package=vegan.Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51: 933938.CrossRefGoogle Scholar
Piedade, M.T.F., Junk, W.J., Adis, J., Parolin, P., 2005. Ecologia, zonação e colonização da vegetação arbórea das ilhas anavilhanas. Pesquisas, Botánica 56: 117144.Google Scholar
Piedade, M.T.F., Parolin, P., Junk, W.J., 2006. Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black water floodplains. Revista de Biologia Tropical 54: 11711178.Google Scholar
Rangel-Ch., J.O., Bogotá, R.G., Jiménez-B., L.C., 2001. Atlas palinológico de la Amazonia Colombiana. IV. Familia Arecaceae. Caldasia 23: 281300.Google Scholar
R Development Core Team. 2016. R: A Language and Environment for Statistical Computing (accessed February 3, 2017). R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
REFLORA. 2016. List of species of the Brazilian Flora (accessed November 2016). Rio de Janeiro Botanical Garden, Rio de Janeiro. http://floradobrasil.jbrj.gov.br/.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55: 18691887.Google Scholar
Ritter, C.D., Andretti, C.B., Nelson, B.W., 2012. Impact of past forest fires on bird populations in flooded forests of the Cuini River in the lowland Amazon. Biotropica 44: 449453.Google Scholar
Rodríguez-Zorro, P.A., Costa, M.L., Behling, H., 2017. Mid-Holocene vegetation dynamics with an early expansion of Mauritia flexuosa palm trees inferred from the Serra do Tepequém in the savannas of Roraima State in Amazonia, northwestern Brazil. Vegetation History and Archaeobotany 26: 455468.Google Scholar
Rodríguez-Zorro, P.A., Enters, D., Hermanowski, B., Costa, M.L., Behling, H., 2015. Vegetation changes and human impact inferred from an oxbow lake in southwestern Amazonia, Brazil since the 19th century. Journal of South American Earth Sciences 62: 186194.Google Scholar
Roosevelt, A.C., Costa, M.L., Lopes Machado, M., Michab, M., Mercier, N., Valladas, H., Feathers, J., et al. 1996. Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272: 373384.Google Scholar
Rull, V., Montoya, E., Nogué, S., Vegas-Vilarrúbia, T., Safont, E., 2013. Ecological palaeoecology in the neotropical Gran Sabana region: long-term records of vegetation dynamics as a basis for ecological hypothesis testing. Perspectives in Plant Ecology, Evolution and Systematics 15: 338359.Google Scholar
Saldarriaga, J.G., West, D.C., 1986. Holocene fires in the northern Amazon basin. Quaternary Research 26: 358366.Google Scholar
Sales, E.O., Barreto, C.F., Barth, M.O., 2011. Morfologia polínica de espécies de Euphorbiaceae s.l. arbóreas ocorrentes no Estado de Santa Catarina, Brasil. Hoehnea 38: 495500.Google Scholar
Santos, G.M., Cordeiro, R.C., Silva-Filho, E.V., Turcq, B., Lacerda, L.D., Fifield, L.K., Gomes, P.R.S., Hausladen, P.A., Sifeddine, A., Albuquerque, A.L., 2001. Chronology of the atmospheric mercury in Lagoa da Pata basin, upper Rio Negro of Brazilian Amazon. Radiocarbon 43: 801808.Google Scholar
Silva, A.L., 2011. Among traditions and modernity: local ecological knowledge, fishing conflicts and fisheries management in the Rio Negro. Brazil. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas 6: 141163.CrossRefGoogle Scholar
Silva, A.L., Tamashiro, J., Begossi, A., 2007. Ethnobotany of riverine populations from the Rio Negro, Amazonia (Brazil). Journal of Ethnobiology 27: 4672.Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615621.Google Scholar
Ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342: 1243092. http://dx.doi.org/10.1126/science.1243092.Google Scholar
Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W., Rodriguez, Z., 1995. Dissecting Amazonian biodiversity. Science 269: 6366.Google Scholar
Urrego, L.E., 1991. Sucesión Holocénica de un bosque de Mauritia flexuosa L. f. en el valle del Río Caquetá (Amazonía colombiana). Colombia Amazónica 5: 99118.Google Scholar
Van der Hammen, T., Hooghiemstra, H., 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19: 725742.Google Scholar
Wang, X., Edwards, L.R., Auler, A.S., Cheng, H., Kong, X., Wang, Y., Cruz, F.W., Dorale, J.A., Chiang, H., 2017. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541: 204207.Google Scholar