Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T17:08:47.822Z Has data issue: false hasContentIssue false

The Eyjafjallajökull AD 2010 eruption and the preservation of medium-sized eruptions in marine surface sediment offshore southern Iceland

Published online by Cambridge University Press:  25 May 2017

Christina Bonanati*
Affiliation:
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
Heidi Wehrmann
Affiliation:
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
Maxim Portnyagin
Affiliation:
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
Kaj Hoernle
Affiliation:
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany Christian-Albrechts-University, Kiel, Germany
*
*Corresponding author at: GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany. E-mail address: [email protected] (C. Bonanati).

Abstract

The recent volcanic eruptions of Eyjafjallajökull 2010 and Grímsvötn 2011 demonstrated the risks that mediumsized explosive Icelandic eruptions pose to the North Atlantic region. Using the Eyjafjallajökull 2010 eruption as a case study, we assess how traceable such eruptions are in the marine sedimentary record at medial distances from the source and investigate which factors have affected the particle transport to the marine sedimentary archive. During R/V Poseidon cruise 457, we recovered 13 box cores at 100–1600 m water depths and distances of 18–180 km southwest, south, and east of Iceland. Volcanic glass shards from the uppermost surface sediment were analyzed for their major element composition by electron microprobe and assigned to their eruptive source by geochemical fingerprinting. The predominantly basaltic particles are mostly derived from the Katla, Grímsvötn-Lakagígar, and Bárðarbunga-Veiðivötn volcanic systems. We also identified rhyolitic particles from the Askja 1875 and Öræfajökull 1362 eruptions. Only three out of almost 900 analyzed glass shards are derived from the recent Eyjafjallajökull 2010 eruption, suggesting that medium-sized eruptions are only poorly preserved in marine sediments located at medial distances southwest to east of Iceland. We conclude that the frequency of past medium-sized eruptions is likely higher than detectable in this archive.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, P.M., Davies, S.M., 2012. Volcanism and the Greenland ice-cores: the tephra record. Earth-Science Reviews 115, 173191.CrossRefGoogle Scholar
Ansmann, A., Groß, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., Wiegner, M., 2010. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophysical Research Letters 37, 15.CrossRefGoogle Scholar
Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 321.Google Scholar
Arnalds, O., Metusalemsson, S., 2004. Sandfok a Sudurlandi 5. oktober 2004 (A sand-storm in South Iceland, October 4th, 2004). Natturufraedingurinn 72, 9092 (In Icelandic).Google Scholar
Balascio, N.L., 2011. Lacustrine Records of Holocene Climate and Environmental Change from the Lofoten Islands, Norway. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
Beaird, N.L., Rhines, P.B., Eriksen, C.C., 2013. Overflow waters at the Iceland–Faroe Ridge observed in multiyear Seaglider surveys. Journal of Physical Oceanography 43, 23342351.CrossRefGoogle Scholar
Bjarnason, I.Th., Wolfe, C.J., Solomon, S.C., 1996. Initial results from the ICEMELT experiment: body-wave delay times and shear-wave splitting across Iceland. Geophysical Research Letters 23, 459462.CrossRefGoogle Scholar
Björnsson, H., 1978. The surface area of glaciers in Iceland. Jökull 28, 31.CrossRefGoogle Scholar
Björnsson, H., 1996. Scales and rates of glacial sediment removal: a 20 km long and 300m deep trench created beneath Breidamerkurjökull during the Little Ice Age. Ann. Glaciol. 22, 141146.CrossRefGoogle Scholar
Björnsson, H., 1979. Glaciers in Iceland. Jökull 29, 7480.CrossRefGoogle Scholar
Björnsson, H., 2002. Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change 35, 255271.CrossRefGoogle Scholar
Björnsson, H., Pálsson, F., 2008. Icelandic glaciers. Jökull 58, 365386.CrossRefGoogle Scholar
Boulton, G.S., Thors, K., Jarvis, J., 1988. Dispersal of glacially derived sediment over part of the continental shelf of south Iceland and the geometry of the resultant sediment bodies. Marine Geology 83, 193223.CrossRefGoogle Scholar
Bukowiecki, N., Zieger, P., Weingartner, E., Jurányi, Z., Gysel, M., Neininger, B., Schneider, B., et al. 2011. Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010. Atmospheric Chemistry and Physics 11, 1001110030.CrossRefGoogle Scholar
Carey, R.J., Houghton, B.F., Thordarson, T., 2010. Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bulletin of Volcanology 72, 259278.CrossRefGoogle Scholar
Carey, S., 1997. Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea. Geology 25, 839842.2.3.CO;2>CrossRefGoogle Scholar
Chambers, F.M., Daniell, J.R.G., Hunt, J.B., Molloy, K., O’Connell, M., 2004. Tephrostratigraphy of An Loch Mór, Inis Oírr, western Ireland: implications for Holocene tephrochronology in the northeastern Atlantic region. Holocene 14, 703720.CrossRefGoogle Scholar
Coulter, S.E., Pilcher, J.R., Plunkett, G., Baillie, M., Hall, V.A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Johnsen, S.J., 2012. Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. Journal of Geophysical Research: Atmospheres 117, D21303. http://dx.doi.org/10.1029/2012JD017698.CrossRefGoogle Scholar
D’Andrea, W.J., Vaillencourt, D.A., Balascio, N.L., Werner, A., Roof, S.R., Retelle, M., Bradley, R.S., 2012. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40, 10071010.CrossRefGoogle Scholar
Davies, S.M., Abbott, P.M., Meara, R.H., Pearce, N.J.G., Austin, W.E.N., Chapman, M.R., Svensson, A., et al. 2014. A North Atlantic tephrostratigraphical framework for 130–60 ka b2k: new tephra discoveries, marine-based correlations, and future challenges. Quaternary Science Reviews 106, 121.CrossRefGoogle Scholar
Davies, S.M., Abbott, P.M., Pearce, N.J.G., Wastegård, S., Blockley, S.P.E., 2012. Integrating the INTIMATE records using tephrochronology: rising to the challenge. Quaternary Science Reviews 36, 1127.CrossRefGoogle Scholar
Dellino, P., Gudmundsson, M.T., Larsen, G., Mele, D., Stevenson, J.A., Thordarson, T., Zimanowski, B., 2012. Ash from the Eyjafjallajökull eruption (Iceland): fragmentation processes and aerodynamic behavior. Journal of Geophysical Research: Solid Earth 117, 110.CrossRefGoogle Scholar
Dugmore, A.J., 1996. Long-distance marker horizons from small-scale eruptions: British tephra deposits from the AD 1510 eruption of Hekla, Iceland. Journal of Quaternary Science 11, 511516.3.0.CO;2-C>CrossRefGoogle Scholar
Dürig, T., Gudmundsson, M.T., Karmann, S., Zimanowski, B., Dellino, P., Rietze, M., Büttner, R., 2015. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—a case study of the 2010 eruption of Eyjafjallajökull, Iceland. Earth, Planets and Space 67, 180. http://dx.doi.org/10.1186/s40623-015-0351-7.CrossRefGoogle Scholar
Eiríksson, J., Knudsen, K.L., Haflidason, H., Henriksen, P., 2000. Late-glacial and Holocene palaeoceanography of the North Icelandic shelf. Journal of Quaternary Science 15, 2342.3.0.CO;2-8>CrossRefGoogle Scholar
Eiríksson, J., Larsen, G., Knudsen, K.L., Heinemeier, J., Símonarson, L.A., 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23, 22472268.CrossRefGoogle Scholar
Flentje, H., Claude, H., Elste, T., Gilge, S., Köhler, U., Plass-Dülmer, C., Steinbrecht, W., Thomas, W., Werner, A., Fricke, W., 2010. The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles. Atmospheric Chemistry and Physics 10, 1008510092.CrossRefGoogle Scholar
Gao, F., Stanič, S., Bergant, K., Bolte, T., Coren, F., He, T.-Y., Hrabar, A., et al. 2011. Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia. Biogeosciences Discussions 8, 38633898.Google Scholar
Geirsdóttir, Á., Miller, G.H., Andrews, J.T., 2007. Glaciation, erosion, and landscape evolution of Iceland. J. Geodyn. 43, 170186.CrossRefGoogle Scholar
Griggs, A.J., Davies, S.M., Abbott, P.M., Coleman, M., Adrian, P., 2015. Visualising tephra sedimentation processes in the marine environment: the potential of X-ray microtomography. Geochemistry, Geophysics, Geosystems 16, 43294343.CrossRefGoogle ScholarPubMed
Griggs, A.J., Davies, S.M., Abbott, P.M., Rasmussen, T.L., Palmer, A.P., 2014. Optimising the use of marine tephrochronology in the North Atlantic: a detailed investigation of the Faroe Marine Ash Zones II, III and IV. Quaternary Science Reviews 106, 122139.CrossRefGoogle Scholar
Grönvold, K., Johnsen, S.J., Clausen, H.B., Hammer, C.U., Bond, G., Bard, E., 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth and Planetary Science Letters 35, 149155.CrossRefGoogle Scholar
Gudmundsdóttir, E.R., Eiríksson, J., Larsen, G., 2011. Identification and definition of primary and reworked tephra in Late Glacial and Holocene marine shelf sediments off North Iceland. Journal of Quaternary Science 26, 589602.CrossRefGoogle Scholar
Guðmundsdóttir, E.R., Eiríksson, J., Larsen, G., 2012. Holocene marine tephrochronology on the Iceland shelf: an overview. Jökull 62, 5372.CrossRefGoogle Scholar
Gudmundsson, M.T., Dürig, T., Höskuldsson, Á., Thordarson, T., 2015. Eruption rates in explosive eruptions: ground truth and models. EGU General Assembly Conference Abstracts, 17, 13265.Google Scholar
Gudmundsson, M.T., Högnadóttir, T., Pálsson, F., Björnsson, H., 2000. Grímsvötn: Eldegsod 1998 og breytingar á botni, rúmmáli og jardhita 1996-1999. Raunvísindastofnun Háskólans, Reykjavík.Google Scholar
Gudmundsson, M.T., Larsen, G., Höskuldsson, Á., Gylfason, Á.G., 2008. Volcanic hazards in Iceland. Jökull 58, 251268.CrossRefGoogle Scholar
Gudmundsson, M.T., Thordarson, T., Höskuldsson, A., Larsen, G., Björnsson, H., Prata, F.J., Oddsson, B., et al. 2012. Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Scientific Reports 2, 572. http://dx.doi.org/10.1038/srep00572.CrossRefGoogle ScholarPubMed
Hreinsdóttir, S., Sigmundsson, F., Roberts, M.J., Björnsson, H., Grapenthin, R., Arason, P., Árnadóttir, T., et al. 2014. Volcanic plume height correlated with magma-pressure change at Grímsvötn Volcano, Iceland. Nature Geoscience 7, 214218.CrossRefGoogle Scholar
Irvine, T.N., Baragar, W.R., 1971. A guide to the chemical classification of the common igneous rocks. Canadian Journal of Earth Sciences 8, 523548.CrossRefGoogle Scholar
Jakobsson, S.P., 1974. Eldgos vid Eldeyjarboda [Volcanic eruptions at Eldeyjarbodi, the Reykjanes Ridge]. Náttúrfoedingurinn 44, 2240.Google Scholar
Jakobsson, S.P., 1979. Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Naturalia Islandica 26. Icelandic Institute of Natural History, Reykjavík.Google Scholar
Jakobsson, S.P., Jónasson, K., Sigurdsson, I.A., 2008. The three igneous rock series of Iceland. Jökull 58, 117138.CrossRefGoogle Scholar
Jennings, A.E., Syvitski, J., Gerson, L., Grönvold, K., Geirsdóttir, Á., Hardardóttir, J., Andrews, J.T., Hagen, S., 2000. Chronology and paleoenvironments during the late Weichselian deglaciation of the southwest Iceland shelf. Boreas 29, 167183.CrossRefGoogle Scholar
Jennings, A.E., Thordarson, T., Zalzal, K., Geirsdo, S., Stoner, J., Hayward, C., 2014. Holocene tephra from Iceland and Alaska in SE Greenland shelf sediments. Geological Society, London, Special Publications 398, 157194.CrossRefGoogle Scholar
Jóhannesson, H., 1983. Gossaga Grímsvatna 1900-1983 í stuttu máli. Jökull 33, 146147.CrossRefGoogle Scholar
Jónsson, P., Höskuldsson, Á., Háskólans, J., 2007. Eldgosið í Öræfajökli 1362, framgangur og afleiðingar. In: Børge, S., Wigum, J. (Eds.), Vorráðstefna Jarðfræðafélags Íslands. Jarðfraedafelag Íslands, Reykjavík p. 16.Google Scholar
Jude-Eton, T.C., Thordarson, T., Gudmundsson, M.T., Oddsson, B., 2012. Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn Volcano, Iceland. Bulletin of Volcanology 74, 10571082.CrossRefGoogle Scholar
Kekonen, T., Moore, J., Perämäki, P., Martma, T., 2005. The Icelandic Laki volcanic tephra layer in the Lomonosovfonna. Polar Research 24, 3340.CrossRefGoogle Scholar
Kirkbride, M.P., Dugmore, A.J., 2008. Two millennia of glacier advances from southern Iceland dated by tephrochronology. Quaternary Research 70, 398411.CrossRefGoogle Scholar
Kjaran, S.P., Sigurjónsson, H., 2004. Uppfok ryks og áfoks af bökkum Hálslóns [Dust emissions from Hálslón]. Landsvirkjun LV-2004/018. Landsvirkjun, Reykjavík.Google Scholar
Kristjánsdóttir, G.B., Stoner, J.S., Jennings, A.E., Andrews, J.T., Grönvold, K., 2007. Geochemistry of Holocene cryptotephras from the North Iceland Shelf (MD99-2269): intercalibration with radiocarbon and palaeomagnetic chronostratigraphies. Holocene 17, 155176.CrossRefGoogle Scholar
Lacasse, C., 2001. Influence of climate variability on the atmospheric transport of Icelandic tephra in the subpolar North Atlantic. Global and Planetary Change 29, 3155.CrossRefGoogle Scholar
Lacasse, C., Werner, R., Paterne, M., Sigurdsson, H., Carey, S., Pinte, G., 1998. Long-range transport of Icelandic tephra to the Irminger Basin, Site 919. In Saunders, A.D., Larsen, H.C., Wise, S.W., Jr. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 152. Ocean Drilling Program, Texas A&M University, College Station, pp. 5165.Google Scholar
Lane, C.S., Blockley, S.P.E., Mangerud, J.A.N., Smith, V.C., Lohne, Ø.S., Tomlinson, E.L., Matthews, I.P., Lotter, A.F., 2012. Was the 12.1ka Icelandic Vedde Ash one of a kind? Quaternary Science Reviews 33, 8799.CrossRefGoogle Scholar
Langmann, B., Folch, A., Hensch, M., Matthias, V., 2012. Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April-May 2010. Atmospheric Environment 48, 18.CrossRefGoogle Scholar
Larsen, G., 1984. Recent volcanic history of the Veidivötn fissure swarm, southern Iceland- an approach to volcanic risk assessment. Journal of Volcanology and Geothermal Research 22, 3358.CrossRefGoogle Scholar
Larsen, G., 1996. Tephrochronology and tephra layers from the time of Norse settlement of Iceland. In Ràdstefnurit, V., Grímsdóttir, G.Á. (Eds.), Landnám á Íslandi. Societas Scientiarum Islandica, Reykjavík, pp. 81106.Google Scholar
Larsen, G., 2000. Holocene volcanism in Iceland and tephrochronology as a tool in volcanology. In Russell, A.J., Marren, P.M. (Eds.), Iceland 2000: Modern Processes and Past Environments. Department of Geography Occasional Papers, No. 21. School of Earth Sciences and Geography, Keele University, Keele, UK, pp. 6567.Google Scholar
Larsen, G., 2005. Explosive volcanism in Iceland: three examples of hydromagmatic Basaltic eruptions on long volcanic fissures within the past 1200 years. EGU General Assembly Conference Abstracts, 7, 10158.Google Scholar
Larsen, G., Ásbjörnsson, S., 1995. Volume of tephra and rock debris deposited by the 1918 Jökulhlaups on western Mýrdalssandur, South Iceland. International Symposium on Glacial Erosion and Sedimentation. International Glaciological Society, Reykjavík p. 67.Google Scholar
Larsen, G., Dugmore, A., Newton, A., 1999. Geochemistry of historical-age silicic tephras in Iceland. Holocene 9, 463471.CrossRefGoogle Scholar
Larsen, G., Eiríksson, J., 2008. Late Quaternary terrestrial tephrochronology of Iceland—frequency of explosive eruptions, type and volume of tephra deposits. Journal of Quaternary Science 23, 109120.CrossRefGoogle Scholar
Larsen, G., Eiríksson, J., Gudmundsdóttir, E., 2014. Last millennium dispersal of air-fall tephra and ocean-rafted pumice towards the north Icelandic shelf and the Nordic seas. In: Austin, W.E.N., Abbott, P.M., Davies, S.M., Pearce, N.J.G., Wastegård, S. (Eds.), Marine Tephrochronology. Geological Society, London, pp. 113140.Google Scholar
Larsen, G., Eiríksson, J., Knudsen, K.L., Heinemeier, J., 2000. Correlation of late Holocene terrestrial and marine tephra markers, north Iceland: implications for reservoir age changes. Polar Research 21, 283290.CrossRefGoogle Scholar
Larsen, G., Gudmundsson, M.T., 1997. Gos í eldstöðvum undir Vatnajökli eftir 1200 AD. In Haraldsson, H. (Ed.), Vatnajökull. Gos Og Hlaup 1996. Vegagerðin, Reykjavík, pp. 2336.Google Scholar
Larsen, G., Gudmundsson, M.T., Björnsson, H., 1998. Eight centuries of periodic volcanism at the center of the Iceland hotspot revealed by glacier tephrostratigraphy. Geology 26, 943946.2.3.CO;2>CrossRefGoogle Scholar
Larsen, G., Newton, A.J., Dugmore, A.J., Vilmundardóttir, E.G., 2001. Geochemistry, dispersal, volumes and chronology of Holocene silicic tephra layers from the Katla volcanic system, Iceland. Journal of Quaternary Science 16, 119132.CrossRefGoogle Scholar
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woodley, A.R., Zanetti, B., 1989. Igneous Rocks. A classification and glossary of terms. Blackwell, Oxford.Google Scholar
Lettino, A., Caggiano, R., Fiore, S., Macchiato, M., Sabia, S., Trippetta, S., 2012. Eyjafjallajökull volcanic ash in southern Italy. Atmospheric Environment 48, 97103.CrossRefGoogle Scholar
Logemann, K., Ólafsson, J., Snorrason, Á., Valdimarsson, H., Marteinsdóttir, G., 2013. The circulation of Icelandic waters – a modelling study. Ocean Science Discussions 10, 763824.Google Scholar
Mohn, H., 1878. Askeregnen den 29de-30-te Marts 1875. Forhandlinger Videnskaps Selskabet 10, 8992.Google Scholar
Nordenskiöld, A.E., 1876. Föredrag af A.E: Nordenskiöld vid vetenskapsakademiens årsfest 1876. Aftonbladet, April 1.Google Scholar
Oddsson, B., 2007. Föredrag af A.E: Nordenskiöld vid vetenskapsakademiens årsfest, 1876.Google Scholar
Oddsson, B., 2007. The Grímsvötn Eruption in 2004: Dispersal and Total Mass of Tephra and Comparison with Plume Transport Models. Master’s thesis, University of Iceland, Reykjavík.Google Scholar
Oldfield, F., Thompson, R., Crooks, P.R.J., Hall, V.A., Harkness, D.D., Housley, R.A., McCormac, F.G., et al. 1997. Radio- carbon dating of a recent high-latitude peat profile: Stor Åmyrân, northern Sweden. Holocene 7, 282290.CrossRefGoogle Scholar
Orwin, J.F., Lamoureux, S.F., Warburton, J., Beylich, A., 2010. A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geografiska Annaler: Series A, Physical Geography 92, 155176.CrossRefGoogle Scholar
Óladóttir, B.A., Larsen, G., Sigmarsson, O., 2011. Holocene volcanic activity at Grímsvötn, Bárdarbunga and Kverkfjöll subglacial centres beneath Vatnajökull, Iceland. Bull. Volcanol. 73, 11871208. doi: 10.1007/s00445-011-0461-4 CrossRefGoogle Scholar
Ovadnevaite, J., Ceburnis, D., Plauskaite-Sukiene, K., Modini, R., Dupuy, R., Rimselyte, I., Ramonet, M., et al. 2009. Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean. Atmospheric Environment 43, 49684974.CrossRefGoogle Scholar
Palais, J.M., Taylor, K., Meyewski, P.A., Grootes, P., 1991. Volcanic Ash from the 1362 A. D. Oræfajokull Eruption (Iceland) in the Greenland Ice Sheet. Geophys. Res. Lett. 18, 12411244.CrossRefGoogle Scholar
Pálsson, S., Harðardóttir, G.H., Vigfússon, G.H., Snorrason, Á., 2000. Reassessment of suspended sediment load of river Jökulsá á Dal at Hjarðarhagi. [In Icelandic.] Report OS-2000/07. Orkustofnun, Reykjavík.Google Scholar
Pálsson, S., Vigfússon, G.H., 1996. Gagnasafn aurburðarmæl-inga 1963-1995. [In Icelandic.] OS-96032/VOD-05 B. Orkustofnun, Reykjavík.Google Scholar
Petersen, G.N., 2010. A short meteorological overview of the Eyjafjallajökull eruption. Weather 65, 203207.CrossRefGoogle Scholar
Petersen, G.N., Björnsson, H., Arason, P., 2012a). The impact of the atmosphere on the Eyjafjallajökull 2010 eruption plume. Journal of Geophysical Research. Atmospheres 117, D00U07. http://dx.doi.org/10.1029/2011JD016762.CrossRefGoogle Scholar
Petersen, G.N., Björnsson, H., Arason, P., von Löwis, S., 2012b). Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland. Earth System Science Data 4, 121127.CrossRefGoogle Scholar
Pietruczuk, A., Krzyścin, J.W., Jarosławskia, J., Podgórskia, J., Sobolewskia, P., Winka, J., 2010. Eyjafjallajökull volcano ash observed over Belsk (52°N,21°E), Poland, in April 2010. International Journal of Remote Sensing 31, 39813986.CrossRefGoogle Scholar
Pilcher, J., Bradley, R., Francus, P., Anderson, L., 2005. A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas 34, 136156.CrossRefGoogle Scholar
Pilcher, J.R., Hall, V.A., 1992. Towards a tephrochronology for the Holocene of the north of Ireland. Holocene 2, 255259.CrossRefGoogle Scholar
Pilcher, J.R., Hall, V.A., McCormac, F.G., 1996. Holocene of the north of Ireland. Journal of Quaternary Science 11, 485494.3.0.CO;2-T>CrossRefGoogle Scholar
Prospero, J.M., Bullard, J.E., Hodgkins, R., 2012. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335, 10781082.CrossRefGoogle ScholarPubMed
Rasmussen, T.L., Wastegård, S., 2014. Faroe Marine Ash Zone IV: a new MIS 3 ash zone on the Faroe Islands margin. Geological Society. London, Special Publications. 398, 8193.Google Scholar
Rossini, P., Molinaroli, E., De Falco, G., Fiesoletti, F., Papa, S., Pari, E., Renzulli, A., et al. 2012. April-May 2010 Eyjafjallajökull volcanic fallout over Rimini, Italy. Atmospheric Environment 48, 122128.CrossRefGoogle Scholar
Saemundsson, K., 1979. Outline of the geology of Iceland. Jökull 29, 728.CrossRefGoogle Scholar
Salmi, M., 1948. The Hekla ashfalls in Finland. Suomen Geologinen Seura 21, 8796.Google Scholar
Schleicher, N., Kramar, U., Dietze, V., Kaminski, U., Norra, S., 2012. Geochemical characterization of single atmospheric particles from the Eyjafjallajökull volcano eruption event collected at ground-based sampling sites in Germany. Atmospheric Environment 48, 113121.CrossRefGoogle Scholar
Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., Baumann, R., et al. 2011. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmospheric Chemistry and Physics 11, 22452279.CrossRefGoogle Scholar
Sharma, K., Self, S., Blake, S., Thordarson, T., Larsen, G., 2008. The AD 1362 Öræfajökull eruption, S.E. Iceland: physical volcanology and volatile release. Journal of Volcanology and Geothermal Research 178, 719739.Google Scholar
Sigmarsson, O., Óladóttir, B.A., Larsen, G., 2010. Compositional time-series from tephra and the temporal evolution of Grímsvötn’s magma chamber. EGU General Assembly Conference Abstracts 12, 12816.Google Scholar
Sigurdsson, H., Sparks, R.S.J., 1981. Petrology of rhyolitic and mixing magma ejecta from the 1875 eruption of Askja, Iceland. Journal of Petrology 22, 4184.CrossRefGoogle Scholar
Sigurdsson, O., 1998. Glacier variations in Iceland 1930–1995 – from the database of the Iceland Glaciological Society. Jökull 45, 325.CrossRefGoogle Scholar
Sigurgeirsson, M.Á., Einarsson, S., 2015. Reykjanes and Svartsengi volcanic systems. In Ilyinskaya, E., Larsen, G., Gudmundsson, M.T. (Eds.), Catalogue of Icelandic Volcanoes. IMO, UI, CPD-NCIP.Google Scholar
Snorrason, Á., Jónsson, P., Sigurdsson, O., Pálsson, S., Árnason, S., Víkingsson, S., Kaldal, I., 2002. November 1996 jökulhlaup on Skeidarársandur outwash plain, Iceland. Special Publications of the International Association of Sedimentologists 32, 5565.Google Scholar
Stevenson, J.A., Loughlin, S., Rae, C., Thordarson, T., Milodowski, A.E., Gilbert, J.S., Harangi, S., et al. 2012. Distal deposition of tephra from the Eyjafjallajökull 2010 summit eruption. Journal of Geophysical Research: Solid Earth 117, B00C10. http://dx.doi.org/10.1029/2011JB008904.CrossRefGoogle Scholar
Stevenson, J.A., Loughlin, S.C., Font, A., Fuller, G.W., Macleod, A., Oliver, I.W., Jackson, B., Horwell, C.J., Thordarson, T., Dawson, I., 2013. UK monitoring and deposition of tephra from the May 2011 eruption of Grímsvötn, Iceland. Journal of Applied Volcanology 2, 3. http://dx.doi.org/10.1186/2191-5040-2-3.CrossRefGoogle Scholar
Stohl, A., Prata, A.J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N.I., et al. 2011. Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption. Atmospheric Chemistry and Physics 11, 43334351.CrossRefGoogle Scholar
Swindles, G.T., Lawson, I.T., Savov, I.P., Connor, C.B., Plunkett, G., 2011. A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology 39, 887890.CrossRefGoogle Scholar
Taddeucci, J., Scarlato, P., Montanaro, C., Cimarelli, C., Del Bello, E., Freda, C., Andronico, D., Gudmundsson, M.T., Dingwell, D.B., 2011. Aggregation-dominated ash settling from the Eyjafjallajökull volcanic cloud illuminated by field and laboratory high-speed imaging. Geology 39, 891894.CrossRefGoogle Scholar
Teal, L.R., Bulling, M.T., Parker, E.R., Solan, M., 2008. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology 2, 207218.CrossRefGoogle Scholar
Thórarinsson, S., 1954. The tephra-fall from Hekla on March 29th 1947. In: Einarsson, T., Kjartansson, G., Thorarinsson, S. (Eds.), vol. 2, no. 3 of The Eruption of Hekla, 1947–1948. Leiftur, Reykjavík.Google Scholar
Thórarinsson, S., 1958. The Öræfajökull Eruption of 1362. Acta Naturalia Islandica II. Icelandic Institute of Natural History, Reykjavík.Google Scholar
Thórarinsson, S., 1963. Askja on Fire. Almen. Bókafélagid, Reykjavík.Google Scholar
Thórarinsson, S., 1965. Submarine eruptions off the coasts of Iceland: Náttúrufraedingurinn. Náttúrufraedingurinn 35, 4974.Google Scholar
Thórarinsson, S., 1967. The eruptions of Hekla in historical times: a tephrochronological study. In Einarsson, T., Kjartansson, G., Thorarinsson, S. (Eds.), vol. 1 of The Eruption of Hekla 1947–1948. Leiftur, Reykjavík, p. 177.Google Scholar
Thórarinsson, S., 1974. Vötninstríd. Saga Grímsvatnagosa og Skeidarárhlaupa [The swift-flowing rivers. Grímsvötn eruptions and glacial floods in Skeidará]. Bókaútgáfa Menningarsjóds, Reykjavík.Google Scholar
Thordarson, T., Larsen, G., 2007. Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. Journal of Geodynamics 43, 118152.CrossRefGoogle Scholar
Thordarson, T., Miller, D.J., Larsen, G., Self, S., Sigurdsson, H., 2001. New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland. Journal of Volcanology and Geothermal Research 108, 3354.CrossRefGoogle Scholar
Thordarson, T., Self, S., 1993. The Laki (Skaftar Fires) and Grimsvötn eruptions in 1783-1785. Bulletin of Volcanology 55, 233263.CrossRefGoogle Scholar
Thornalley, D.J.R., McCave, I.N., Elderfield, H., 2010. Freshwater input and abrupt deglacial climate change in the North Atlantic. Paleoceanography 25, 116.CrossRefGoogle Scholar
Thornalley, D.J.R., McCave, I.N., Elderfield, H., 2011. Tephra in deglacial ocean sediments south of Iceland: stratigraphy, geochemistry and oceanic reservoir ages. Journal of Quaternary Science 26, 190198.CrossRefGoogle Scholar
Thoroddsen, T., 1925. Det Kongelige danske Videnskabernes Selskabs Skrifter, 8. række. Naturvidensabelig og mathematisk Afdeling B IX Høst & Søn, Coenhagen.Google Scholar
Thorsteinsson, T., Gísladóttir, G., Bullard, J., McTainsh, G., 2011. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland. Atmospheric Environment 45, 59245933.CrossRefGoogle Scholar
Thorsteinsson, T., Jóhannsson, T., Stohl, A., Kristiansen, N.I., 2012. High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajkull eruption and resuspension of deposited ash. Journal of Geophysical Research. Solid Earth 117, B00C05. http://dx.doi.org/10.1029/2011JB008756.Google Scholar
Todd, J.A., Austin, W.E.N., Abbott, P.M., 2014. Quantifying bioturbation of a simulated ash fall event. Geological Society. London, Special Publications. 398, 195207.Google Scholar
Tómasson, H., 1996. The jökulhlaup from Katla in 1918. Annals of Glaciology 22, 249254.CrossRefGoogle Scholar
van den Bogaard, C., Schmincke, H.-U., 2002. Linking the North Atlantic to central Europe: a high-resolution Holocene tephrochronological record from northern Germany. Journal of Quaternary Science 17, 320.CrossRefGoogle Scholar
Wallrabe-Adams, H.-J., Lackschewitz, K.S., 2003. Chemical composition, distribution, and origin of silicic volcanic ash layers in the Greenland–Iceland–Norwegian Sea: explosive volcanism from 10 to 300 ka as recorded in deep-sea sediments. Marine Geology 193, 273293.CrossRefGoogle Scholar
Wastegård, S., Björck, S., Grauert, M., Hannon, G.E., 2001. The Mjáuvøtn tephra and other Holocene tephra horizons from the Faroe Islands: a link between the Icelandic source region, the Nordic Seas, and the European continent. Holocene 11, 101109.CrossRefGoogle Scholar
Wulf, S., Dräger, N., Ott, F., Serb, J., Appelt, O., Gudmundsdóttir, E., van den Bogaard, C., Słowiński, M., Błaszkiewicz, M., Brauer, A., 2016. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quaternary Science Reviews 132, 114.CrossRefGoogle Scholar
Zielinski, G.A., Germani, M.S., Larsen, G., Baillie, M.G.L., Whitlow, S., Twickler, M.S., Taylor, K., 1995. Evidence of the Eldgjá eruption in the GISP2 Greenland ice core: relationship to eruption processes and climatic conditions in the tenth century. Holocene 5, 129140.CrossRefGoogle Scholar
Supplementary material: PDF

Bonanati supplementary material

Bonanati supplementary material 1

Download Bonanati supplementary material(PDF)
PDF 58.6 MB
Supplementary material: File

Bonanati supplementary material

Bonanati supplementary material 2

Download Bonanati supplementary material(File)
File 669.4 KB
Supplementary material: File

Bonanati supplementary material

Bonanati supplementary material 3

Download Bonanati supplementary material(File)
File 137.2 KB
Supplementary material: File

Bonanati supplementary material

Bonanati supplementary material 4

Download Bonanati supplementary material(File)
File 25 KB
Supplementary material: File

Bonanati supplementary material

Bonanati supplementary material 5

Download Bonanati supplementary material(File)
File 38.1 KB
Supplementary material: File

Bonanati supplementary material

Bonanati supplementary material 6

Download Bonanati supplementary material(File)
File 18.3 KB