Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T22:49:19.180Z Has data issue: false hasContentIssue false

Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St. Livres ice cave, Switzerland

Published online by Cambridge University Press:  20 January 2017

Markus Stoffel*
Affiliation:
Climatic Change and Climate Impacts Group (C3i), Institute for Environmental Sciences, University of Geneva, Site de Batelle, chemin de Drize 7, CH-1227 Carouge-Geneva, Switzerland Laboratory of Dendrogeomorphology (Dendrolab.ch), Institute of Geological Sciences, University of Berne, Baltzerstrasse 1+3, CH-3012 Berne, Switzerland Department of Geosciences, Geography, University of Fribourg, chemin du Musée 4, CH-1700 Fribourg, Switzerland
Marc Luetscher
Affiliation:
Geology and Paleontology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria Swiss Institute for Speleology and Karst Studies (SISKA), P.O. Box 818, CH-2301 La Chaux-de-Fonds, Switzerland
Michelle Bollschweiler
Affiliation:
Laboratory of Dendrogeomorphology (Dendrolab.ch), Institute of Geological Sciences, University of Berne, Baltzerstrasse 1+3, CH-3012 Berne, Switzerland Department of Geosciences, Geography, University of Fribourg, chemin du Musée 4, CH-1700 Fribourg, Switzerland
Frédéric Schlatter
Affiliation:
Department of Geosciences, Geography, University of Fribourg, chemin du Musée 4, CH-1700 Fribourg, Switzerland
*
Corresponding author. Climatic Change and Climate Impacts Group (C3i), Institute for Environmental Sciences, University of Geneva, Site de Batelle, chemin de Drize 7, CH-1227 Carouge-Geneva, Switzerland.

E-mail address:[email protected] (M. Stoffel).

Abstract

Mid-latitude ice caves are assumed to be highly sensitive to climatic changes and thus represent a potentially interesting environmental archive. Establishing a precise chronology is, however, a prerequisite for the understanding of processes driving the cave-ice mass balance and thus allows a paleoenvironmental interpretation. At St. Livres ice cave (Jura Mountains, Switzerland), subfossil trees and organic material are abundant in the cave-ice deposit, therefore allowing the dating of individual ice layers. The dendrochronological analysis of 45 subfossil samples of Norway spruce (Picea abies (L.) Karst.) from the overhanging front of the ice outcrop as well as the dating of seven wood samples with 14C dating allowed for a reconstruction of the St. Livres cave-ice sequence and for the determination of periods of ice accumulation and ablation. Results suggest a maximal age of 1200 ± 50 14C yr BP for the observed ice sequence and indicate the presence of four major deposition gaps dated to the 14th, 15th, mid-19th and late 19th century, which can be related with periods of positive North Atlantic Oscillation anomalies (NAO+) over the winter half-year and/or anthropogenic cave-ice abstraction. Similarly, there is evidence that periods of cave-ice accumulation as observed between AD 1877–1900 and AD 1393–1415 would correspond with phases of negative NAO indices. Cave ice represents therefore an original climate archive for the winter half-year and is complementary to other continental proxies recording preferentially summer conditions (e.g., tree rings, varves).

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, D. Phénomènes et formes du Karst jurassien. Eclogae geologicae Helvetiae 62, (1969). 325399.Google Scholar
Audétat, M., Heiss, G., Christen, D., Deriaz, P., Heiss, C., Luetscher, M., Morel, P., Perrin, J., and Wittwer, M. Inventaire spéléologique du Jura vaudois, partie ouest. Commission spéléologique de l'Académie Suisse des Sciences Naturelles, La Chaux-de-Fonds. (2002). 536 pp Google Scholar
Begert, M., Schlegel, T., and Kirchhofer, W. Homogeneous temperature and precipitation series of Switzerland from 1864–2000. International Journal of Climatology 25, (2005). 6580.Google Scholar
Buttler, A., Gillet, F., and Gobat, J.M. Végétation et flore. Blant, M. Le Jura: les paysages, la vie sauvage, les terroirs. (2001). Delachaux et Niestlé, Paris. 77151.Google Scholar
Bollschweiler, M., Stoffel, M., Schneuwly, D.M., and Bourqui, K. Traumatic resin ducts in Larix decidua trees impacted by debris flows. Tree Physiology 28, (2008). 255263.Google Scholar
Bradley, R.S., Hughes, M.K., Diaz, H.F. Climate in Medieval time. Science 302, (2003). 404405.Google Scholar
Bräker, O.U. Measuring and data processing in tree-ring research — a methodological introduction. Dendrochronologia 20, 1–2 (2002). 203216.CrossRefGoogle Scholar
Browne, G.F. Ice Caves of France and Switzerland: a Narration of Subterranean Exploration. (1865). Longmans Green, London.Google Scholar
Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Boehm, R. Temperature and precipitation variability in the European Alps since AD 1500. International Journal of Climatology 25, (2005). 18551880.CrossRefGoogle Scholar
Cecil, L.D., Green, J.R., and Thompson, L.G. Earth Paleoenvironments: Records Preserved in Mid- and Low Altitude Glaciers. Developments in Paleoenvironmental Research. (2004). Kluwer Academic Publishers, 250 Google Scholar
Citterio, M., Turri, S., Bini, A., Maggi, V., Pini, R., Ravazzi, C., Santilli, M., Stenni, B., and Udisti, R. Multidisciplinary approach to the study of the Lo Lc 1650 “Abisso sul Margine dell'Alto Bregai” ice cave (Lecco, Italy). Theoretical and Applied Karstology 17, (2004). 4550.Google Scholar
Clausen, H.B., Vrana, K., Hansen, S.B., Larsen, L.B., Baker, J., Siggaard-Andersen, M.L., Sjolte, J., and Lundholm, S.C. Continental ice body in Dobsina Ice Cave (Slovakia) — Part II. — Results of chemical and isotopic study. Zelinka, J. Proceedings of the 2nd International Workshop on Ice Caves, IWIC-II, Demanovska Dolina, Slovak Republic. (2007). 2937.Google Scholar
Cook, E.R., and Kairiukstis, L. Methods of Dendrochronology. Applications in the Environmental Sciences. (1990). Kluwer, Dordrecht.Google Scholar
Cook, E.R., D'Arrigo, R.D., and Mann, M.E. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 1400. Journal of Climate 15, (2002). 17541764.Google Scholar
Eckstein, D., and Bauch, J. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88, (1969). 230250.CrossRefGoogle Scholar
Egger, H., Gassmann, P., and Burri, N. Situation actuelle du travail au laboratoire de dendrochronologie de Neuchâtel. Dendrochronologia 3, (1985). 177192.Google Scholar
Gassmann, P., (2007). Picea abies (L.) Karst. and Abies alba Mill. chronology of the Neuchâtel Jura 1200–1986. Neuchâtel Archeology Service, Laténium. (unpublished data).Google Scholar
Grissino-Mayer, H.D. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, (2001). 205221.Google Scholar
Haeberli, W., Frauenfelder, R., Kääb, A., and Wagner, S. Characteristics and potential climatic significance of “miniature ice caps” (crest-and cornice-type low-altitude ice archives). Journal of Glaciology 50, (2004). 129136.Google Scholar
Hofgaard, A. Structure and regeneration patterns in a virgin Picea abies forest in northern Sweden. Journal of Vegetation Science 4, (1993). 601608.Google Scholar
Holmes, R.L. Computer assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, (1983). 6978.Google Scholar
Holmlund, P., Onac, B.P., Hansson, M., Holmgren, K., Mörth, M., Nyman, M., and Persoiu, A. Assessing the paleoclimate potential of cave glaciers: the example of the Scarisoara ice cave (Romania). Geografiska Annaler 87A (2005). 193201.CrossRefGoogle Scholar
Keller, F., Frauenfelder, R., Hoelzle, M., Kneisel, C., Lugon, R., Phillips, M., Reynard, E., and Wenker, L. Permafrost map of Switzerland. Collection Nordicana. Centre d'Études Nordiques, Université Laval 57, (1998). 557568.Google Scholar
Kern, Z., Molnar, M., Persoiu, A., and Nagy, B. Radiochemical and stratigraphic analysis of two ice cores from Bortig Ice Cave, Apuseni Mts, Romania. Zelinka, J. Proceedings of the 2nd International Workshop on ice caves, IWIC-II, Demanovska Dolina, Slovak Republic. (2007). 6569.Google Scholar
Luetscher, M., Lismonde, B., and Jeannin, P.Y. Heat exchanges in the heterothermic zone of a karst system: Monlesi cave, Swiss Jura Mountains. Journal of Geophysical Research 113, (2008). F02025 Google Scholar
Luetscher, M., Bolius, D., Schwikowski, M., Schotterer, U., and Smart, P.L. Comparison of techniques for dating of subsurface ice from Monlesi ice cave, Switzerland. Journal of Glaciology 53, (2007). 374384.Google Scholar
Luetscher, M., Jeannin, P.Y., and Haeberli, W. Ice caves as an indicator of winter climate evolution—a case study from the Jura Mountains. The Holocene 15, (2005). 982993.Google Scholar
Magny, M., Gauthier, E., Vannière, B., and Peyron, O. Palaeohydrological changes and human-impact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. Holocene 18, 2 (2008). 255265.Google Scholar
Mangini, A., Spötl, C., and Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ 18O stalagmite record. Earth and Planetary Science Letters 235, (2005). 741751.CrossRefGoogle Scholar
McCullough, H. Plant succession on fallen logs in a virgin spruce-fir forest. Ecology 29, (1948). 508513.Google Scholar
MeteoSwiss, (2008). http://www.meteoschweiz.admin.ch/web/en/weather.html (site consulted on July 11, 2008) Google Scholar
Niklaus, T.R., Bonani, G., Simonius, M., Suter, M., and Wölfli, W. CalibETH: an interactive computer program for the calibration of radiocarbon dates. Radiocarbon 34, 3 (1992). 483492.Google Scholar
Ohata, T., Furukawa, T., and Higuchi, K. Glacioclimatological study of perennial ice in the Fuji ice cave, Japan. 1. Seasonal variation and mechanism of maintenance. Arctic and Alpine Research 26, (1994). 227237.Google Scholar
Ohata, T., Furukawa, T., and Osada, K. Glacioclimatological study of perennial ice in the Fuji ice cave, Japan. 2. Interannual variation and relation to climate. Arctic and Alpine Research 26, (1994). 238244.CrossRefGoogle Scholar
Ott, E., Frehner, M., Frey, H.U., and Lüscher, P. Gebirgsnadelwälder: Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. (1997). Paul Haupt, Bern, Stuttgart, Wien.Google Scholar
Pfister, C. Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen. (1999). Paul Haupt Verlag, Bern, Stuttgart, Wien.Google Scholar
Rinn, F. Time Series Analysis and Presentation V3.0. Reference Manual. (1989). Rinntech, Heidelberg.Google Scholar
Rinntech, , (2008). http://www.rinntech.com/Products/Lintab.htm. (site consulted on April 28, 2008).Google Scholar
Schroeder, J. Les formes de glace des grottes de la Nahanni, T.N.O., Canada. Canadian Journal of Earth Sciences 14, (1977). 11791185.Google Scholar
Schweingruber, F.H. Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. (1983). Paul Haupt, Bern, Google Scholar
Schwikowski, M., Barbante, C., Döring, T., Gäggeler, H.W., Boutron, C., Schotterer, U., Tobler, L., Van de Velde, K., Ferrari, C., Cozzi, G., Rosman, K., and Cescon, P. Post-17th-century changes of European lead emissions recorded in high-altitude Alpine snow and ice. Environmental Science and Technology 38, (2004). 957964.Google Scholar
Sjögren, P. The development of pasture woodland in the southwest Swiss Jura Mountains over 2000 years, based on three adjacent peat profiles. The Holocene 16, 2 (2006). 210223.Google Scholar
Söderström, L. Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in Northern Sweden. Nordic Journal of Botany 8, (1988). 8997.Google Scholar
Stoffel, M., and Bollschweiler, M. Tree-ring analysis in natural hazards research — an overview. Natural Hazards and Earth System Sciences 8, (2008). 187202.CrossRefGoogle Scholar
Stoffel, M., Conus, D., Grichting, M.A., Lièvre, I., and Maître, G. Unraveling the patterns of late Holocene debris-flow activity on a cone in the central Swiss Alps: chronology, environment and implications for the future. Global and Planetary Change 60, (2008). 222234.Google Scholar
Stokes, M.A., and Smiley, T.L. An Introduction to Tree-ring Dating. (1968). University of Chicago Press, Chicago.Google Scholar
Storaunet, K.O., and Rolstad, J. How long do Norway spruce snags stand? Evaluating four estimation methods. Canadian Journal of Forest Research 34, (2004). 376383.Google Scholar
Storaunet, K.O., and Rolstad, J. Time since death and fall of Norway spruce logs in old-growth and selectively cut boreal forest. Canadian Journal of Forest Research 32, (2002). 18011812.Google Scholar
Vaganov, E.A., Hughes, M.K., and Shashkin, A.V. Growth Dynamics of Conifer Tree Rings. Images of Past and Future Environments. (2006). Springer, Berlin.Google Scholar
van der Knaap, W.O., Leeuwen, J.F.N., Finsinger, W., Gobet, E., Pini, R., Schweizer, A., Valsecchi, V., Wick, L., and Ammann, B. Migration and population expansion of Abies, Fagus, Picea and Quercus since 15′000 years in and across the Alps, based on pollen-percentage threshold values. Quaternary Science Reviews 24, 5–6 (2005). 645680.Google Scholar
Vogel, J.S., Southon, J.R., Nelson, D.E., and Brown, T.A. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5, 2 (1984). 289293.Google Scholar
Wigley, T.M.L., Briffa, K.R., and Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23, (1984). 201203.Google Scholar
Yonge, C.J., and MacDonald, W.D. The potential of perennial cave ice in isotope palaeoclimatology. Boreas 28, (1999). 357362.CrossRefGoogle Scholar