Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T16:24:00.501Z Has data issue: false hasContentIssue false

The East Asian Monsoon During MIS 2 Expressed in a Speleothem δ18O Record From Jintanwan Cave, Hunan, China

Published online by Cambridge University Press:  20 January 2017

Jason Cosford*
Affiliation:
Department of Geology, University of Regina, Regina, SK, Canada S4S 0A2
Hairuo Qing
Affiliation:
Department of Geology, University of Regina, Regina, SK, Canada S4S 0A2
Yin Lin
Affiliation:
Department of Geosciences, National Taiwan University, Taipei, Taiwan (R.O.C.) 10611
Bruce Eglington
Affiliation:
Saskatchewan Isotope Laboratory, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2
Dave Mattey
Affiliation:
Department of Geology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
Yue Gau Chen
Affiliation:
Department of Geosciences, National Taiwan University, Taipei, Taiwan (R.O.C.) 10611
Meiliang Zhang
Affiliation:
Institute of Karst Geology, Chinese Academy of Geological Science, Guilin, China, 541004
Hai Cheng
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Twin Cities, MN 55455, USA
*
*Corresponding author. J.D. Mollard and Associates, Regina, SK, Canada, S4P 0R7. Fax: +1 306 352 8820.E-mail address:[email protected] (J. Cosford).

Abstract

Stalagmite J1 from Jintanwan Cave, Hunan, China, provides a precisely dated, decadally resolved δ18O proxy record of paleoclimatic changes associated with the East Asian monsoon from ∽29.5 to 14.7 ka and from ∽12.9 to 11.0 ka. At the time of the last glacial maximum (LGM), the East Asian summer monsoon weakened and then strengthened in response to changes in Northern Hemisphere insolation. As the ice sheets retreated the East Asian summer monsoon weakened, especially during Heinrich event H1, when atmospheric and oceanic teleconnections transferred the climatic changes around the North Atlantic to the monsoonal regions of Eastern Asia. A depositional hiatus between ∽14.7 and 12.9 ka leaves the deglacial record incomplete, but an abrupt shift in δ18O values at ∽11.5 ka marks the end of the Younger Dryas and the transition into the Holocene. Comparisons of the J1 record to other Chinese speleothem records indicate synchronous climatic changes throughout monsoonal China. Further comparisons to a speleothem record from western Asia (Socotra Island) and to Greenland ice cores support hemispherical-scale paleoclimatic change. Spectral and wavelet analyses reveal centennial- and decadal-scale periodicities that correspond to solar frequencies and to oscillations in atmospheric and oceanic circulation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, A., (1978). Long-term variations of daily insolation and quaternary climate changes. Journal of the Atmospheric Sciences 35, 23622367.2.0.CO;2>CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., (1993). Correlations between climate records from North Atlantic sediment and Greenland ice. Nature 365, 143147.Google Scholar
Cheng, H., Edwards, L., Wang, Y., Kong, X., Ming, Y., Kelly, M., Wang, X., Gallup, C., Liu, W., (2006). A penultimate glacial monsoon record from Hulu Cave and two phase glacial terminations. Geology 34, 217220.Google Scholar
Chiang, J., Bitz, C., (2005). Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25, 477496.Google Scholar
Clark, P., Pisias, N., Stocker, T., Weaver, A., (2002). The role of thermohaline circulation in abrupt climate change. Nature 415, 863869.Google Scholar
Clement, A., Seager, R., Cane, M., (1999). Orbital controls on the El Nino/Southern oscillation and the tropical climate. Paleoceanogrpahy 14, 4, 441456.Google Scholar
Cosford, J., Qing, H., Eglington, B., Mattey, D., Yuan, D., Zhang, M., Cheng, H., (2008). East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth and Planetary Science Letters 275, 296307.Google Scholar
Ding, Z., Liu, T., Rutter, N., Yu, Z., Guo, Z., Zhu, R., (1995). Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quaternary Research 44, 149159.Google Scholar
Dorale, J., Edwards, R., Ito, E., Gonzalez, L., (1998). Climate and vegetation history of the midcontinent from 75"25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282, 18711874.CrossRefGoogle Scholar
Dykoski, C., Edwards, R., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave. China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Edwards, R., Chen, J., Wasserburg, G., (1987). 238U"234U"230Th"232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, 175192.Google Scholar
Fairchild, I., Smith, C., Baker, A., Fuller, L., Spotl, C., Mattey, D., McDermott, F., E.I.M.F.(2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.Google Scholar
Ge, Q., Guo, F., Zheng, J., Hao, Z., (2007). Meiyu in the middle and lower reaches of the Yangtze River since 1736. Chinese Science Bulletin 52, 18.Google Scholar
Ghil, M., Allen, R., Dettinger, M., Ide, K., Kondrashov, D., Mann, M., Robertson, A., Saunders, A., Tian, Y., Varadi, F., Yiou, P., (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics 40, 1, 3.13.41..Google Scholar
Gimeno, L., de la Torre, L., Nieto, R., Garcia, R., Hernandez, E., Ribera, P., (2003). Changes in the relationship NAO-Northern Hemisphere temperature due to solar activity. Earth and Planetary Science Letters 206, 1520.Google Scholar
Grinsted, A., Moore, J., Jevrejeva, S., (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys 11, 561566.Google Scholar
Hendy, C., (1971). The isotopic geochemistry of speleothems: I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824.CrossRefGoogle Scholar
Hu, C., Henderson, G., Huang, J., Xie, S., Sun, Y., Johnson, K., (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters 266, 221232.Google Scholar
Johnson, K., Ingram, B., (2004). Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth and Planetary Science Letters 220, 365377.Google Scholar
Koutavas, A., Lynch-Stieglita, J., Marchitto, T., Sachs, J., (2002). El Nino-like pattern in ice age tropical Pacific sea-surface temperature. Science 297, 226230.Google Scholar
McManus, J., Francois, R., Gherardi, J., Keigwin, L., Brown-Leger, S., (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837.Google Scholar
Mickler, P., Banner, J., Stern, L., Asmerom, Y., Edwards, R., Ito, E., (2004). Stable isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic effects. Geochimica et Cosmochimica Acta 68, 43814393.Google Scholar
Mickler, P., Stern, L., Banner, J., (2006). Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 188, 1-2, 6581.CrossRefGoogle Scholar
Minobe, S., (1997). A 50-70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters 24, 683686.Google Scholar
O'Neil, J., Clayton, R., Mayeda, T., (1969). Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 30, 55475558.Google Scholar
Porter, S., An, Z., (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.Google Scholar
Prasad, S., Vos, H., Negendank, J., Waldmann, N., Goldstein, S., Stein, M., (2004). Evidence from Lake Lisan of solar influence on decadal- to centennial-scale climate variability during marine oxygen isotope stage 2. Geology 32, 7, 581584.Google Scholar
Rasmussen, S., Andersen, K., Svensson, A., Steffensen, J., Vinther, B., Clausen, H., Siggaard-Andersen, M., Johnsen, S., Larsen, L., Dahl-Jensen, D., Bigler, M., R"thlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M., Ruth, U., (2006). A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102 .CrossRefGoogle Scholar
Reimer, P., Baillie, M., Bard, E., Bayliss, A., Beck, J., Bertrand, C., Blackwell, P., Buck, C., Burr, G., Cutler, K., Damon, P., Edwards, R., Fairbanks, R., Friedrich, M., Guilderson, T., Hogg, A., Hughen, K., Kromer, B., McCormac, G., Manning, S., Ramsey, C., Reimer, R., Remmele, S., Southon, J., Stuiver, M., Talamo, S., Taylor, F., Van der Plicht, J., Weyhenmeyer, C., (2004). INTCAL04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Reinsch, C., (1967). Smoothing by spline functions. Numerische Mathematik 10, 177183.Google Scholar
Rozanski, K., Araguas-Araguas, L., Gonfiantini, R., (1993). Isotopic patterns in modern global precipitation. Swart, P.K., Climate Change in Continental Isotopic Records American Geophysical Union Monograph 78, Washington., 136.Google Scholar
Schrag, D., Hampt, G., Murray, D., (1996). Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272, 19301932.Google Scholar
Schulz, M., Mudelsee, M., (2002). REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, 421426.Google Scholar
Shakun, J., Burns, S., Fleitmann, D., Kramers, J., Matter, A., Al-Subary, A., (2007). A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth and Planetary Science Letters 259, 442456.Google Scholar
Shen, C., Edwards, R., Cheng, H., Dorale, J., Thomas, R., Moran, S., Weinstein, S., Edmonds, H., (2002). Uranium and thorium isotopic concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, 165178.Google Scholar
Svensson, A., Andersen, K., Bigler, M., Clausen, H., Dahl-Jensen, D., Davies, S., Johnsen, S., Muscheler, R., Rasmussen, S., Rothlisberger, R., Steffensen, J, Vinther, B., (2006). The Greenland Ice Core Chronology 2005, 15-42 ka. Part 2: Comparison to other records. Quaternary Science Reviews 25, 32583267.Google Scholar
Torrence, C., Compo, G., (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 6178.Google Scholar
Wang, B., Clemens, S., Liu, P., (2003). Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Marine Geology 201, 521.Google Scholar
Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z., Kershaw, P., Sarnthein, M., (2005). Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary Science Reviews 24, 5-6, 595629.Google Scholar
Wang, Y., Cheng, H., Edwards, R., An, Z., Wu, J., Shen, C., Dorale, J., (2001). High-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wang, Y., Cheng, H., Edwards, R., He, Y., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., An, Z., (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.Google Scholar
Winkler, M., Wang, P., (1993). The Late-Quaternary vegetation and climate of China. Wright, H., Kutzbach, J., Webb, T., Ruddiman, W., Street-Perrott, F., Bartlein, P., Global climates since the Last Glacial Maximum University of Minnesota Press, 569.Google Scholar
Wu, J., Wang, Y., Cheng, H., Edwards, L., (2009). An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite. Science in China Series D: Earth Sciences 52, 3, 360368.CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., DeDecker, P., Johnston, P., Fifield, L., (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713716.CrossRefGoogle ScholarPubMed
Yuan, D., Cheng, H., Edwards, R., Dykoski, C., Kelly, M., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J., An, Z., Cai, Y., (2004). Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science 304, 575578.Google Scholar
Zhou, H., Zhao, J., Feng, Y., Gagan, M., Zhou, G., Yan, J., (2008). Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China. Quaternary Research 69, 306315.CrossRefGoogle Scholar